Hi Quantum espresso users,
I would like to know how do we find the total number of plane waves from the output file of quantum espresso?Is it the term '* npwx = 1887' *for the following output file which has been given as one of the examples of Quantum espresso. *The output* Program PWSCF v.2.0 starts ... Today is 16Feb2004 at 16: 6:28 Ultrasoft (Vanderbilt) Pseudopotentials Current dimensions of program pwscf are: ntypx =10 npk =40000 lmax = 3 nchix = 6 ndim = 2000 nbrx = 8 nqfm = 8 bravais-lattice index = 4 lattice parameter (a_0) = 4.2470 a.u. unit-cell volume = 1061.4448 (a.u.)^3 number of atoms/cell = 12 number of atomic types = 1 kinetic-energy cutoff = 22.0000 Ry charge density cutoff = 88.0000 Ry convergence threshold = 1.0E-06 beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = PZ (1100) iswitch = 0celldm(1)= 4.247000 celldm(2)= 0.000000 celldm(3)= 16.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( -0.500000 0.866025 0.000000 ) a(3) = ( 0.000000 0.000000 16.000000 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( 1.000000 0.577350 0.000000 ) b(2) = ( 0.000000 1.154701 0.000000 ) b(3) = ( 0.000000 0.000000 0.062500 ) PSEUDO 1 is Be (vbc) zval = 2.0 lmax= 1 lloc= 1 i= 1 2 3 core alpha = 0.99964 0.0000 a(i) = 1.0000 0.0000 l = 0 alpha = 1.7068 0.0000 0.0000 a(i) = 5.4710 0.0000 0.0000 a(i+3)= -1.6312 0.0000 0.0000 l = 1 alpha = 0.78031 0.0000 0.0000 a(i) = -1.6972 0.0000 0.0000 a(i+3)= 0.48457 0.0000 0.0000 nonlinear core correction: rho(r) = ( a + b r^2) exp(-alpha r^2) a = 0.95153E-01 b = 0.24127 alpha= 2.7594atomic species valence mass pseudopotential Be 2.00 1.00000 Be( 1.00) 12 Sym.Ops. (with inversion) Cartesian axes site n. atom positions (a_0 units) 1 Be tau( 1) = ( 0.0000000 -0.2886751 4.3596671 ) 2 Be tau( 2) = ( 0.0000000 0.2886751 3.5484854 ) 3 Be tau( 3) = ( 0.0000000 -0.2886751 2.7546560 ) 4 Be tau( 4) = ( 0.0000000 0.2886751 1.9655547 ) 5 Be tau( 5) = ( 0.0000000 -0.2886751 1.1789015 ) 6 Be tau( 6) = ( 0.0000000 0.2886751 0.3929197 ) 7 Be tau( 7) = ( 0.0000000 -0.2886751 -0.3929197 ) 8 Be tau( 8) = ( 0.0000000 0.2886751 -1.1789015 ) 9 Be tau( 9) = ( 0.0000000 -0.2886751 -1.9655547 ) 10 Be tau( 10) = ( 0.0000000 0.2886751 -2.7546560 ) 11 Be tau( 11) = ( 0.0000000 -0.2886751 -3.5484854 ) 12 Be tau( 12) = ( 0.0000000 0.2886751 -4.3596671 )number of k points= 30 gaussian broad. (ryd)= 0.0500 ngauss = 1 cart. coord. in units 2pi/a_0 k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 0.0078125 k( 2) = ( 0.0625000 0.0360844 0.0000000), wk = 0.0468750 k( 3) = ( 0.1250000 0.0721688 0.0000000), wk = 0.0468750 k( 4) = ( 0.1875000 0.1082532 0.0000000), wk = 0.0468750 ........................................................... ......... . .. ........... ......... ......... . . .. .. k( 27) = ( 0.2500000 0.4330127 0.0000000), wk = 0.0468750 k( 28) = ( 0.3125000 0.4690971 0.0000000), wk = 0.0937500 k( 29) = ( 0.3750000 0.5051815 0.0000000), wk = 0.0468750 k( 30) = ( 0.3125000 0.5412659 0.0000000), wk = 0.0468750 G cutoff = 40.2057 ( 14795 G-vectors) FFT grid: ( 16, 16,216) nbndx = 80 nbnd = 20 natomwfc = 12* npwx = 1887--------------Is this the number of plane wave in the calculation?* nelec = 24.00 nkb = 12 ngl = 94 . Best regards Rose Mary Masters student semiconductor Physics Belgium -------------- next part -------------- An HTML attachment was scrubbed... URL: http://www.democritos.it/pipermail/pw_forum/attachments/20110404/c538f00e/attachment.htm
