Dear Suza, On Sun, Feb 12, 2012 at 5:05 PM, Suza W <suza.rri at gmail.com> wrote:
> > >> > if you have degenerate eigenvalues, any linear combination of >> eigenvectors >> > in the degenerate subspace is a solution. What you get from numerical >> > diagonalization depends upon the phase of the moon. >> >> Yes Prof. Giannozzi, in principle, it is true. > Nevertheless, in practice, phonon code in ABINIT > always renders these well-arranged eigen displacements > without depending much on the phase of the moon. > > > ( 0.0 0.0 2.30182985E-05 ) > ( 0.0 0.0 1.65666412E-03 ) > ( 0.0 0.0 -1.75258026E-04 ) > ( 0.0 0.0 -3.12875743E-03 ) > ( 0.0 0.0 -1.75258026E-04 ) > > ( 0.0 2.30182985E-05 0.0 ) > ( 0.0 1.65666412E-03 0.0 ) > ( 0.0 -1.75258026E-04 0.0 ) > ( 0.0 -3.12875743E-03 0.0 ) > ( 0.0 -1.75258026E-04 0.0 ) > > ( 2.30182985E-05 0.0 0.0 ) > ( 1.65666412E-03 0.0 0.0 ) > ( -1.75258026E-04 0.0 0.0 ) > ( -3.12875743E-03 0.0 0.0 ) > ( -1.75258026E-04 0.0 0.0 ) > > I think, after applying ASR i.e. using dynmat.x, you can obtain these well arranged eigen vectors. Although no so sure. regards, Sonu -------------- next part -------------- An HTML attachment was scrubbed... URL: http://www.democritos.it/pipermail/pw_forum/attachments/20120212/7a33102e/attachment.htm
