OK, but here you are showing a different case where you fix the local magnetic moment (as a vector)...
In this case, for some reason the local moment along z is still a bit far from the target of 2.8, therefore the penalty energy is still large (also given the large value of the lambda prefactor). Does it work with a smaller constrained moment, say 2.5? GS On 07/04/2014 04:31 PM, Pang Rui wrote: > Dear Gabriele Sclauzero: > I covered the output, so I gave a new one with the same problems.The input > file can be seen in the end. The only difference is the angle and > amplitude. The scf converged after 59 steps(In default conv_thr). The > output of the magnetic moment is as followed > > ============================================================================== > atom number 1 relative position : 0.3750 0.0000 0.0000 > charge : 13.367288 > magnetization : 0.000122 0.000076 2.717489 > magnetization/charge: 0.000009 0.000006 0.203294 > polar coord.: r, theta, phi [deg] : 2.717489 0.003039 > 31.837662 > constrained moment : 0.000000 0.000000 2.800000 > > > ============================================================================== > > > ============================================================================== > atom number 2 relative position : 0.6250 0.0000 0.0000 > charge : 13.367507 > magnetization : 0.000165 0.000174 2.717217 > magnetization/charge: 0.000012 0.000013 0.203270 > polar coord.: r, theta, phi [deg] : 2.717217 0.005053 > 46.399234 > constrained moment : 0.000000 0.000000 2.800000 > > > ============================================================================== > But the constraint energy (Ryd) = 2.04918119. > The question is, the lambda has been quite large, scf problems will occur > if it is increased. But the constraint energy is still large. How can I get > both constraint energy and scf converged in a constraint magnetic moment > calculation? > Thanks for the reply. > > INPUTFILE: > &control > pseudo_dir = "~/pr/QE5/pseudo" > outdir="./", > calculation="scf", > / > &system > ibrav= 0, nat= 2, ntyp= 2, > ecutwfc = 280.0, > occupations='smearing', > degauss=0.001, > smearing='gauss' > starting_magnetization(1)=2.8 > starting_magnetization(2)=2.8 > angle1(1)=0.0 > angle1(2)=0.0 > angle2(1)=0.0 > angle2(2)=0.0 > constrained_magnetization="atomic" > noncolin=.ture. > lambda=150.0 > nosym=.true. > / > &electrons > mixing_beta = 0.1 > electron_maxstep=200 > / > ATOMIC_SPECIES > Fe1 56 Fe.pbe-sp-hgh.UPF > Fe2 56 Fe.pbe-sp-hgh.UPF > ATOMIC_POSITIONS angstrom > Fe1 3.0 0.0 0.0 > Fe2 5.0 0.0 0.0 > K_POINTS automatic > 1 1 1 0 0 0 > CELL_PARAMETERS angstrom > 8.0 0.0000000000000000 0.0000000000000000 > 0.0 8.0 0.0000000000000000 > 0.0 0.0 8.0 -- Dr. Gabriele Sclauzero ETH Zurich Materials Theory HIT G 43.2 Wolfgang-Pauli-Str. 27 8093 Z?rich, Switzerland Phone +41 44 633 94 10 Fax +41 44 633 14 59 gabriele.sclauzero at mat.ethz.ch http://www.theory.mat.ethz.ch/people/postdocs/gsclauze
