Dear all,

I have several questions when calculating phonons by ph.x:

(1) Using the same input files, I got different output files of dynamical 
matrices when using different computing cores;

take q = (    0.000000000   0.000000000   0.000000000 ) as an example:

Using 96 computing cores, the results after the line "Dynamical Matrix in 
cartesian axes"

and the q-value are:

 **************************************************************************
     freq (    1) =      -1.940214 [THz] =     -64.718584 [cm-1]
 (  0.000000  0.000000 -0.000000  0.000000 -0.237593  0.000000 )
 (  0.000000  0.000000 -0.000000  0.000000 -0.237593  0.000000 )
 (  0.000000  0.000000 -0.000000  0.000000 -0.237593  0.000000 )
 (  0.000000  0.000000 -0.000000  0.000000 -0.237593  0.000000 )
 (  0.000000  0.000000 -0.000000  0.000000 -0.237593  0.000000 )
 (  0.000000  0.000000 -0.000000  0.000000 -0.237593  0.000000 )
 (  0.000000  0.000000 -0.000000  0.000000 -0.209687  0.000000 )
 (  0.000000  0.000000 -0.000000  0.000000 -0.209687  0.000000 )
 (  0.000000  0.000000 -0.000000  0.000000 -0.209687  0.000000 )
 (  0.000000  0.000000 -0.000000  0.000000 -0.209687  0.000000 )
 (  0.000000  0.000000 -0.000000  0.000000 -0.209687  0.000000 )
 (  0.000000  0.000000 -0.000000  0.000000 -0.209687  0.000000 )
 (  0.000000  0.000000 -0.000000  0.000000 -0.363998  0.000000 )
 (  0.000000  0.000000 -0.000000  0.000000 -0.363998  0.000000 )
 (  0.000000  0.000000 -0.000000  0.000000 -0.363998  0.000000 )
     freq (    2) =       0.946381 [THz] =      31.567870 [cm-1]
 (  0.000000  0.000000 -0.000000  0.000000 -0.101981  0.000000 )
 (  0.000000  0.000000 -0.000000  0.000000 -0.101981  0.000000 )
 (  0.000000  0.000000 -0.000000  0.000000  0.101979  0.000000 )
 (  0.000000  0.000000 -0.000000  0.000000  0.101979  0.000000 )
 (  0.000000  0.000000 -0.000000  0.000000  0.000001  0.000000 )
 (  0.000000  0.000000 -0.000000  0.000000  0.000001  0.000000 )
 (  0.000000  0.000000 -0.000000  0.000000 -0.384498  0.000000 )
 ( -0.000000  0.000000 -0.000000  0.000000 -0.384498  0.000000 )
 (  0.000000  0.000000 -0.000000  0.000000  0.384493  0.000000 )
 (  0.000000  0.000000 -0.000000  0.000000  0.384493  0.000000 )
 (  0.000000  0.000000 -0.000000  0.000000  0.000005  0.000000 )
 (  0.000000  0.000000 -0.000000  0.000000  0.000005  0.000000 )
 (  0.000000  0.000000 -0.000000  0.000000  0.428402  0.000000 )
 ( -0.000000  0.000000 -0.000000  0.000000 -0.428397  0.000000 )
 (  0.000000  0.000000 -0.000000  0.000000 -0.000006  0.000000 )
     freq (    3) =       0.946381 [THz] =      31.567870 [cm-1]
 (  0.000000  0.000000 -0.000000  0.000000 -0.058877  0.000000 )
 (  0.000000  0.000000 -0.000000  0.000000 -0.058877  0.000000 )
 (  0.000000  0.000000 -0.000000  0.000000 -0.058879  0.000000 )

However, when I using 128 computing cores, the corresponding results turn to be:

**************************************************************************
     freq (    1) =      -1.941478 [THz] =     -64.760743 [cm-1]
 ( -0.000000  0.000000 -0.000000  0.000000  0.237504  0.000000 )
 ( -0.000000  0.000000 -0.000000  0.000000  0.237504  0.000000 )
 ( -0.000000  0.000000 -0.000000  0.000000  0.237504  0.000000 )
 ( -0.000000  0.000000 -0.000000  0.000000  0.237504  0.000000 )
 ( -0.000000  0.000000 -0.000000  0.000000  0.237504  0.000000 )
 ( -0.000000  0.000000 -0.000000  0.000000  0.237504  0.000000 )
 ( -0.000000  0.000000 -0.000000  0.000000  0.209612  0.000000 )
 ( -0.000000  0.000000 -0.000000  0.000000  0.209612  0.000000 )
 ( -0.000000  0.000000 -0.000000  0.000000  0.209612  0.000000 )
 ( -0.000000  0.000000 -0.000000  0.000000  0.209612  0.000000 )
 ( -0.000000  0.000000 -0.000000  0.000000  0.209612  0.000000 )
 ( -0.000000  0.000000 -0.000000  0.000000  0.209612  0.000000 )
 ( -0.000000  0.000000 -0.000000  0.000000  0.364201  0.000000 )
 ( -0.000000  0.000000 -0.000000  0.000000  0.364201  0.000000 )
 ( -0.000000  0.000000 -0.000000  0.000000  0.364201  0.000000 )
     freq (    2) =      -0.797967 [THz] =     -26.617308 [cm-1]
 ( -0.217955  0.000000 -0.132999  0.000000 -0.000000  0.000000 )
 ( -0.217955  0.000000 -0.132999  0.000000 -0.000000  0.000000 )
 ( -0.212134  0.000000 -0.133209  0.000000  0.000000  0.000000 )
 ( -0.212134  0.000000 -0.133209  0.000000  0.000000  0.000000 )
 ( -0.215227  0.000000 -0.138145  0.000000  0.000000  0.000000 )
 ( -0.215227  0.000000 -0.138145  0.000000  0.000000  0.000000 )
 ( -0.230258  0.000000 -0.129133  0.000000 -0.000000  0.000000 )
 ( -0.230258  0.000000 -0.129133  0.000000 -0.000000  0.000000 )
 ( -0.205571  0.000000 -0.130026  0.000000  0.000000  0.000000 )
 ( -0.205571  0.000000 -0.130026  0.000000  0.000000  0.000000 )
 ( -0.218687  0.000000 -0.150959  0.000000  0.000000  0.000000 )
 ( -0.218687  0.000000 -0.150959  0.000000  0.000000  0.000000 )
 ( -0.228822  0.000000 -0.140474  0.000000  0.000000  0.000000 )
 ( -0.224086  0.000000 -0.140645  0.000000 -0.000000  0.000000 )
 ( -0.226602  0.000000 -0.144661  0.000000 -0.000000  0.000000 )
     freq (    3) =      -0.797967 [THz] =     -26.617308 [cm-1]
 ( -0.136570  0.000000  0.212256  0.000000 -0.000000  0.000000 )
 ( -0.136570  0.000000  0.212256  0.000000 -0.000000  0.000000 )
 ( -0.136360  0.000000  0.218077  0.000000  0.000000  0.000000 )

So, why do different computing cores lead to different results? Does someone 
encounter the same problems?

By the way, is it reasonable for the negative frequency (such as freq (    1) = 
     -1.940214 [THz] =     -64.718584 [cm-1]) ?


(2) With different computing cores, I always get the phonon spectrum with small 
imaginary frequency no matter how I adjust the parameters suggested by other 
guys.

So can someone give me some useful suggestions to eliminate the imaginary 
frequency?


Thanks for your time,

Xiaoming

Department of Materials Science and Engineering, University of Utah

_______________________________________________
Pw_forum mailing list
[email protected]
http://pwscf.org/mailman/listinfo/pw_forum

Reply via email to