Dear Dr. Tamas,Thanks for the clarification.I think the problem might be the K ponits ( 1 1 1 ) i am using in my scf input file , i will increase it to ( 3 3 1 ) , then i will let you know the results.I’m really learning a lot form you, Thanks a lot
Sent from Yahoo Mail for iPhone On Friday, October 30, 2020, 1:17 PM, Tamas Karpati <[email protected]> wrote: Dear Omer, 1, Freqs. can be ordered. Atoms can be ordered. It is intriguing how you want to compare them. But seriously, you have N atoms and 3N normal modes or phonons (some are not real modes, though). How do you want to order them "the same way"? 2, What is more important, you have a real big no. of negative freqs. of high abs. value meaning that your structure is away from a stationary point (neighter a local minimum nor a TS). Your simulations are blindingly fast, thus i suggest to perform an all-atom phonon simulation to see if you have all positive freqs. after the first 6 (rotation+translation) -which six should be small (ideally < 20 /cm but near 100 is OK). t On Fri, Oct 30, 2020 at 4:56 AM Omer Mutasim <[email protected]> wrote: > I have perturbed the molecule with the 3 surface atoms. Also i tried 9 > surface atoms connected to it (currently running), however i got the same > negative frequencies. Does the frequencies, shown below, have the same order > of perturbed atoms ? i.e. the ( 1 - 1) correspond to the first atom, ( 2 - > 2) for the second atom ,.. ? > what does " I+R " & " A" means ? > could the higher frequencies ( > 600 ), at the end, correspond to the > molecule ? > > below are the results for molecule + 3 surface atoms: > > freq ( 1 - 1) = -2644.2 [cm-1] --> A I+R > freq ( 2 - 2) = -2633.2 [cm-1] --> A I+R > freq ( 3 - 3) = -2304.5 [cm-1] --> A I+R > freq ( 4 - 4) = -2238.8 [cm-1] --> A I+R > freq ( 5 - 5) = -2164.5 [cm-1] --> A I+R > freq ( 6 - 6) = -2121.2 [cm-1] --> A I+R > freq ( 7 - 7) = -2104.9 [cm-1] --> A I+R > freq ( 8 - 8) = -2080.8 [cm-1] --> A I+R > freq ( 9 - 9) = -2061.5 [cm-1] --> A I+R > freq ( 10 - 10) = -1925.4 [cm-1] --> A I+R > freq ( 11 - 11) = -1897.1 [cm-1] --> A I+R > freq ( 12 - 12) = -1397.0 [cm-1] --> A I+R > freq ( 13 - 13) = -1234.0 [cm-1] --> A I+R > freq ( 14 - 14) = -1161.7 [cm-1] --> A I+R > freq ( 15 - 15) = -1015.3 [cm-1] --> A I+R > freq (316 -316) = 138.5 [cm-1] --> A I+R > freq (317 -317) = 145.4 [cm-1] --> A I+R > freq (318 -318) = 206.2 [cm-1] --> A I+R > freq (319 -319) = 216.9 [cm-1] --> A I+R > freq (320 -320) = 263.8 [cm-1] --> A I+R > freq (321 -321) = 291.9 [cm-1] --> A I+R > freq (322 -322) = 295.8 [cm-1] --> A I+R > freq (323 -323) = 384.0 [cm-1] --> A I+R > freq (324 -324) = 459.1 [cm-1] --> A I+R > freq (325 -325) = 529.7 [cm-1] --> A I+R > freq (326 -326) = 621.1 [cm-1] --> A I+R > freq (327 -327) = 640.1 [cm-1] --> A I+R > freq (328 -328) = 1190.8 [cm-1] --> A I+R > freq (329 -329) = 1568.2 [cm-1] --> A I+R > freq (330 -330) = 1851.0 [cm-1] --> A I+R On Fri, Oct 30, 2020 at 4:56 AM Omer Mutasim <[email protected]> wrote: > > below are the results for molecule + 9 surface atoms: > > freq ( 1 - 1) = -2653.0 [cm-1] --> A I+R > freq ( 2 - 2) = -2647.8 [cm-1] --> A I+R > freq ( 3 - 3) = -2324.1 [cm-1] --> A I+R > freq ( 4 - 4) = -2249.4 [cm-1] --> A I+R > freq ( 5 - 5) = -2179.6 [cm-1] --> A I+R > freq ( 6 - 6) = -2163.6 [cm-1] --> A I+R > freq ( 7 - 7) = -2133.7 [cm-1] --> A I+R > freq ( 8 - 8) = -2118.1 [cm-1] --> A I+R > freq ( 9 - 9) = -2089.4 [cm-1] --> A I+R > freq ( 10 - 10) = -1980.7 [cm-1] --> A I+R > freq ( 11 - 11) = -1933.8 [cm-1] --> A I+R > freq ( 12 - 12) = -1924.3 [cm-1] --> A I+R > freq ( 13 - 13) = -1818.4 [cm-1] --> A I+R > freq ( 14 - 14) = -1591.9 [cm-1] --> A I+R > freq ( 15 - 15) = -1470.5 [cm-1] --> A I+R > freq ( 16 - 16) = -1411.8 [cm-1] --> A I+R > freq ( 17 - 17) = -1364.6 [cm-1] --> A I+R > freq ( 18 - 18) = -1297.9 [cm-1] --> A I+R > freq ( 19 - 19) = -1297.7 [cm-1] --> A I+R > freq ( 20 - 20) = -1271.4 [cm-1] --> A I+R > freq ( 21 - 21) = -1267.9 [cm-1] --> A I+R > freq ( 22 - 22) = -1188.6 [cm-1] --> A I+R > freq ( 23 - 23) = -1186.4 [cm-1] --> A I+R > freq ( 24 - 24) = -1154.5 [cm-1] --> A I+R > freq ( 25 - 25) = -1152.2 [cm-1] --> A I+R > freq ( 26 - 26) = -1077.7 [cm-1] --> A I+R > freq ( 27 - 27) = -1051.2 [cm-1] --> A I+R > freq ( 28 - 28) = -1028.4 [cm-1] --> A I+R > freq ( 29 - 29) = -1019.6 [cm-1] --> A I+R > freq ( 30 - 30) = -926.6 [cm-1] --> A I+R > freq ( 31 - 31) = -914.1 [cm-1] --> A I+R > freq ( 32 - 32) = -855.3 [cm-1] --> A I+R > freq ( 33 - 33) = -713.5 [cm-1] --> A I+R > freq (298 -298) = 91.1 [cm-1] --> A I+R > freq (299 -299) = 102.9 [cm-1] --> A I+R > freq (300 -300) = 107.6 [cm-1] --> A I+R > freq (301 -301) = 143.9 [cm-1] --> A I+R > freq (302 -302) = 175.5 [cm-1] --> A I+R > freq (303 -303) = 185.7 [cm-1] --> A I+R > freq (304 -304) = 202.5 [cm-1] --> A I+R > freq (305 -305) = 266.3 [cm-1] --> A I+R > freq (306 -306) = 284.1 [cm-1] --> A I+R > freq (307 -307) = 333.0 [cm-1] --> A I+R > freq (308 -308) = 349.3 [cm-1] --> A I+R > freq (309 -309) = 442.5 [cm-1] --> A I+R > freq (310 -310) = 517.1 [cm-1] --> A I+R > freq (311 -311) = 571.9 [cm-1] --> A I+R > freq (312 -312) = 610.2 [cm-1] --> A I+R > freq (313 -313) = 699.8 [cm-1] --> A I+R > freq (314 -314) = 755.0 [cm-1] --> A I+R > freq (315 -315) = 790.9 [cm-1] --> A I+R > freq (316 -316) = 806.4 [cm-1] --> A I+R > freq (317 -317) = 847.5 [cm-1] --> A I+R > freq (318 -318) = 867.3 [cm-1] --> A I+R > freq (319 -319) = 881.1 [cm-1] --> A I+R > freq (320 -320) = 903.7 [cm-1] --> A I+R > freq (321 -321) = 942.0 [cm-1] --> A I+R > freq (322 -322) = 1029.9 [cm-1] --> A I+R > freq (323 -323) = 1070.9 [cm-1] --> A I+R > freq (324 -324) = 1084.6 [cm-1] --> A I+R > freq (325 -325) = 1214.6 [cm-1] --> A I+R > freq (326 -326) = 1307.9 [cm-1] --> A I+R > freq (327 -327) = 1395.9 [cm-1] --> A I+R > freq (328 -328) = 1450.3 [cm-1] --> A I+R > freq (329 -329) = 1714.9 [cm-1] --> A I+R > freq (330 -330) = 1990.8 [cm-1] --> A I+R > > > > On Thursday, October 29, 2020, 3:52:29 PM GMT+4, Tamas Karpati > <[email protected]> wrote: > > > Dear Omer, > > Very well, your simulation completes successfully. > Negative (ie. imaginary) eigenvalues indicate for all-atom > perturbations that your system is not in a local minimum conformation. > In such an overlimited situation, however, these numbers are probably > meaningless. To see what is behind, try to add more and more > atoms to the perturbation pool. The followings might show you > how much of the reactant environment is necessary to account for: > - first add the metal atoms that connect to S or O > - then add metal atoms directly connected to the above metals > - extend further (2 then more metal bond environments). > In principle the all-atom phonon sim. would give you 6 pcs. > of near zero "frequencies" if your structure is a real local minimum. > If not, the no. of imaginary freqs. (also called nimag) informs you > about the dimensions of the E-hypersurface that you need to climb more. > Note: R and P need zero, TS needs exactly one for nimag. > > One more point: your molecule was SO2 which decomposed so that > you left out the other O from your simulation (for just 2). It would > be more correct > to do the above steps including all S + 2 O and their direct/indirect > chemical environments... I'm curious what others would say to this. > > Good luck, > t > > > > > > On Thu, Oct 29, 2020 at 11:55 AM Omer Mutasim <[email protected]> wrote: > > > > Dear Dr. Tamas > > i tried "nogg", and it does work. However, the frequencies are negative for > > the perturbed molecule atoms (HS) . I only perturbed the molecule. > > Given that the molecule is stable, i.e. not a transition state. > > Below are the output & input files: > > > > output: > > > > Mode symmetry, C_1 (1) point group: > > > > freq ( 1 - 1) = -3417.3 [cm-1] --> A I+R > > freq ( 2 - 2) = -2660.2 [cm-1] --> A I+R > > freq ( 3 - 3) = -2139.6 [cm-1] --> A I+R > > freq ( 4 - 4) = -1453.3 [cm-1] --> A I+R > > freq ( 5 - 5) = -1358.9 [cm-1] --> A I+R > > freq ( 6 - 6) = -1036.4 [cm-1] --> A I+R > > freq (325 -325) = 1030.9 [cm-1] --> A I+R > > freq (326 -326) = 1151.4 [cm-1] --> A I+R > > freq (327 -327) = 1295.7 [cm-1] --> A I+R > > freq (328 -328) = 1579.7 [cm-1] --> A I+R > > freq (329 -329) = 2857.6 [cm-1] --> A I+R > > freq (330 -330) = 3310.5 [cm-1] --> A I+R > > > > > > Ph.x input file: > > > > phonon calculation at Gamma point. > > &inputph > > outdir = './outdir' > > prefix = 'HS' > > tr2_ph = 1.0d-09 > > epsil = .false. > > amass(1) = 58.69340 > > amass(2) = 30.97376 > > amass(3) = 1.00784 > > amass(4) = 32.065 > > fildyn = 'HS.dyn' > > alpha_mix(1)=0.3 > > nogg = .true > > nat_todo = 2 > > > > / > > 0.0 0.0 0.0 > > > > 1 2 > > > > > > scf input file: > > > > &CONTROL > > calculation = "scf" > > prefix = 'HS' > > outdir = './outdir' > > pseudo_dir = '/home/' > > restart_mode = 'from_scratch' > > forc_conv_thr = 1.0e-03 > > etot_conv_thr = 1e-04 > > nstep = 999 > > / > > &SYSTEM > > ibrav = 0 > > ecutrho = 200 > > ecutwfc = 25 > > nat = 110 > > ntyp = 4 > > occupations='smearing',smearing='gaussian',degauss=0.005 > > vdw_corr = 'DFT-D2' > > nspin = 2 > > starting_magnetization(1)= 0.01 > > / > > &ELECTRONS > > conv_thr = 1e-8 > > electron_maxstep = 200 > > mixing_mode ='local-TF' > > mixing_beta = 0.3 > > / > > &IONS > > / > > K_POINTS {automatic} > > 1 1 1 0 0 0 > > ATOMIC_SPECIES > > Ni 58.69340 Ni.pbe-n-rrkjus_psl.0.1.UPF > > P 30.97376 P.pbe-n-rrkjus_psl.1.0.0.UPF > > H 1.00784 H.pbe-rrkjus_psl.0.1.UPF > > S 32.065 S.pbe-n-rrkjus_psl.1.0.0.UPF > > CELL_PARAMETERS {angstrom} > > 11.765383541833 0.0000000000 0.0000000000 > > -5.88269177091652 10.1891210324947 0.0000000000 > > 0.0000000000 0.0000000000 30.9938690567585 > > ATOMIC_POSITIONS (angstrom) > > H 0.879694621 3.392266427 10.708999692 > > S 2.266698845 3.396363162 10.560733430 > > Ni -2.744571590 4.755054131 0.244939179 > > Ni 3.134031329 1.363792691 0.248008546 > > . > > . > > . > > P -1.060403962 1.841094610 1.604930623 > > P -3.921453199 6.792156181 0.000000000 0 0 0 > > P 1.960697149 3.396027080 0.000000000 0 0 0 > > P 7.842906399 0.000000000 0.000000000 0 0 0 > > > > > > > > On Thursday, October 29, 2020, 02:20:23 PM GMT+4, Tamas Karpati > > <[email protected]> wrote: > > > > > > did you try nogg=.true. ? > > if not, i suggest you to apply the minimum necessary amount of > > parameters in your input file. > > > > On Wed, Oct 28, 2020 at 3:14 PM Omer Mutasim <[email protected]> wrote: > > > > > > I just tried but i got the following error message: > > > > > > " > > > Error in routine phq_readin (1): > > > gamma_gamma tricks with nat_todo not available. Use nogg=.true. > > > > > > " > > > i'm doing single q phonon calculation > > > any help ? > > > On Wednesday, October 28, 2020, 05:45:15 PM GMT+4, Tamas Karpati > > > <[email protected]> wrote: > > > > > > > > > Dear Omer, > > > > > > Did you try to use the nat_todo option in your PH.x input file? > > > (Do not forget to list the perturbed atom indices on the last line.) > > > > > > ASE can use QE as "calculator" and I think it can do what you want. > > > If not, use Phonopy. > > > > > > HTH, > > > t > > > > > > On Wed, Oct 28, 2020 at 1:28 PM Omer Mutasim <[email protected]> > > > wrote: > > > > > > > > > > > > Dear all > > > > > > > > I need to calculate the the virbrational frequencies of adsorbate > > > >molecule on surface using phonon single q calculation , in order to > > > >estimate the partition function (for entropy ,reaction rate constants). > > > >so my questions go like: > > > > > > > > I have a large supercell (110 atoms) which means a high degrees of > > > >freedom (330 DOF) , so i want to decrease this DOF , by perturbing only > > > >adsorbate molecule and the the two uppermost layers > > > > > > > > how to select the perturbed atoms in quantum espresso ? > > > > I have heard that it can be done by finite difference method, which > > > > wasn't employed in QE. > > > > However, i have seen a post where Dr. Paolo Giannozzi said: " it can be > > > > performed by two finite-difference calculations with opposite > > > > displacements " > > > > So , can you please tell me, what are the steps involved in doing this > > > > finite-difference method mentioned by Dr. Paolo ? or any other > > > > procedure that can be do the same ? > > > > > > > > > > > > Thanks in advance > > > > > > > > > > > > > > > > > > > > Omer Elmutasim > > > > Research Assistant > > > > Chemical Engineering Department > > > > Khalifa university- UAE > > > > > > > _______________________________________________ > > > > Quantum ESPRESSO is supported by MaX (www.max-centre.eu) > > > > users mailing list [email protected] > > > > https://lists.quantum-espresso.org/mailman/listinfo/users > > > _______________________________________________ > > > Quantum ESPRESSO is supported by MaX (www.max-centre.eu) > > > users mailing list [email protected] > > > https://lists.quantum-espresso.org/mailman/listinfo/users > > > > > > > > _______________________________________________ > > > Quantum ESPRESSO is supported by MaX (www.max-centre.eu) > > > users mailing list [email protected] > > > https://lists.quantum-espresso.org/mailman/listinfo/users > > _______________________________________________ > > Quantum ESPRESSO is supported by MaX (www.max-centre.eu) > > users mailing list [email protected] > > https://lists.quantum-espresso.org/mailman/listinfo/users
_______________________________________________ Quantum ESPRESSO is supported by MaX (www.max-centre.eu) users mailing list [email protected] https://lists.quantum-espresso.org/mailman/listinfo/users
