I just checked my version and result: 2.154D-13 + 343.05029i
--> [version, options] = getversion() version = "scilab-6.1.1" options = "VC++" "x64" "tk" "release" "Jul 15 2021" "15:32:10" Windows 10 Lester On Wed, 5 Jan 2022 at 13:45, Heinz Nabielek <heinznabie...@me.com> wrote: > Is there a reason that my round-off error is 2.831D-13 ? > > Is there a way to get SciLab to print always 2.831e-13 so that I can copy > numbers over to EXCEL? > > Heinz > > > --> function y=f(z) > > y = exp((z.^2))./(z-2) > > endfunction > > --> fz=intl(0, 2*%pi, 2, 1, f,1e-10) // gives round-off error > fz = 2.831D-13 + 343.05029i > > --> 2*%pi*%i*%e^4 > ans = 0. + 343.05029i > > Scilab Version: 6.1.1.988271013 > macOS Catalina Version 10.15.7 > > > ______________- > > > On 05.01.2022, at 14:31, sgoug...@free.fr wrote: > > > > Hello Lester, > > > > The integrand is y = exp((z^2))/(z-2), not y = exp((z^2)). > > Then, provided that the (undocumented) absolute tolerance is increased > wrt the default one, > > we get the expected result: > > > > --> function y=f(z) > >> y = exp((z.^2))./(z-2) > >> endfunction > > > > --> fz=intl(0, 2*%pi, 2, 1, f,1e-10) // gives round-off error > > fz = > > 4.199D-13 + 343.05029i > > > > --> 2*%pi*%i*%e^4 > > ans = > > 0. + 343.05029i > > > > Regards > > Samuel > > > >> ----- Mail d'origine ----- > >> De: Lester Anderson > >> Envoyé: Wed, 05 Jan 2022 09:46:47 +0100 (CET) > >> > >> Hello, > >> > >> I am trying to understand how to work the Cauchy integral inputs and > >> replicate the results of a published example: > >> > >> .e.g. Compute the integral of e^(z^2) / (z-2) assumes C is closed > >> (anticlockwise) and z=2 is inside C (a simple circle). The solution > should > >> be 2*pi*i*f(2) = 2*pi*i*e^4 > >> > >> In Scilab, the solution is defined from the Cauchy Integral (intl): > >> y = intl(a, b, z0, r, f) > >> a and b are real and z complex > >> > >> function y=f(z) > >> y = exp((z^2)) // solution uses f(z) = e^(z^2) > >> endfunction > >> > >> fz=intl(0, 2*%pi, 2+0*%i, 1, f) // gives round-off error > >> // z position +2(real z), 0(imaginary z) > >> > > _______________________________________________ > > users mailing list > > users@lists.scilab.org > > http://lists.scilab.org/mailman/listinfo/users > >
_______________________________________________ users mailing list users@lists.scilab.org http://lists.scilab.org/mailman/listinfo/users