Hi,
After a (functionnal) polynomial chaos has been run, I am searching a way to
explore what basis was used. For example, if a Uniform distribution was used, I
would like to confirm that a Hermite polynomial was used. Of course, this
cannot always been done, especially if one of the input distributions was «
non-standard ».
However, even in the classical case, I was not able to find out what method of
the polynomialChaosAlgorithm could be used to retrieve the information. For
example :
[...]
# Create Polynomial Chaos
polynomialChaosAlgorithm = FunctionalChaosAlgorithm(myFunction, \
inputDistribution, fixedStrategy, evalStrategy)
# Compute expansion coefficients
polynomialChaosAlgorithm.run()
# Explore the result
myAdapStrat = polynomialChaosAlgorithm.getAdaptiveStrategy() # a
AdaptiveStrategy
mybasis = myAdapStrat.getBasis() # a OrthogonalBasis
# and after ... ?
Afterwhile, I thought that this was not possible, because the basis was an
hidden internal object. This is why I tried a second solution : directly
explore the polynomial collection used to create the collection of univariate
polynomials :
# Create a coolection of standard univariate polynomials
polyColl = PolynomialFamilyCollection(dim)
for i in range(dim):
marginali=inputDistribution.getMarginal(i)
polyColl[i] = StandardDistributionPolynomialFactory(marginali)
# Explore the first polynomial
poly0 = polyColl[0]
# and after ... ?
But I was not able to find a way to the Hermite polynomial neither.
Has anyone an idea ?
Regards,
Michaël
Ce message et toutes les pièces jointes (ci-après le 'Message') sont établis à
l'intention exclusive des destinataires et les informations qui y figurent sont
strictement confidentielles. Toute utilisation de ce Message non conforme à sa
destination, toute diffusion ou toute publication totale ou partielle, est
interdite sauf autorisation expresse.
Si vous n'êtes pas le destinataire de ce Message, il vous est interdit de le
copier, de le faire suivre, de le divulguer ou d'en utiliser tout ou partie. Si
vous avez reçu ce Message par erreur, merci de le supprimer de votre système,
ainsi que toutes ses copies, et de n'en garder aucune trace sur quelque support
que ce soit. Nous vous remercions également d'en avertir immédiatement
l'expéditeur par retour du message.
Il est impossible de garantir que les communications par messagerie
électronique arrivent en temps utile, sont sécurisées ou dénuées de toute
erreur ou virus.
____________________________________________________
This message and any attachments (the 'Message') are intended solely for the
addressees. The information contained in this Message is confidential. Any use
of information contained in this Message not in accord with its purpose, any
dissemination or disclosure, either whole or partial, is prohibited except
formal approval.
If you are not the addressee, you may not copy, forward, disclose or use any
part of it. If you have received this message in error, please delete it and
all copies from your system and notify the sender immediately by return message.
E-mail communication cannot be guaranteed to be timely secure, error or
virus-free.
_______________________________________________
OpenTURNS users mailing list
[email protected]
http://openturns.org/mailman/listinfo/users