On Wed, 2014-05-14 at 11:38 +0100, Timothy Murphy wrote: > [tim@grover ~]$ sa-learn --dump magic > > 0.000 0 3 0 non-token data: bayes db version > 0.000 0 25758 0 non-token data: nspam > 0.000 0 36434 0 non-token data: nham > 0.000 0 144860 0 non-token data: ntokens
That sure is sufficient training (number of spam and ham messages, and individual tokens learned). The amount of ham might possibly skew results. But to see weather bayes scores are biased towards hamminess, we'd need the X-Spam headers -- which I will not ask you a third time for. > 0.000 0 1390675205 0 non-token data: oldest atime > 0.000 0 1400062502 0 non-token data: newest atime > 0.000 0 1400049904 0 non-token data: last journal sync atime Last db access and journal sync times are recent, from today. Everything looking fine. If you still suspect Bayes to not work properly, you'll have to provide more details. -- char *t="\10pse\0r\0dtu\0.@ghno\x4e\xc8\x79\xf4\xab\x51\x8a\x10\xf4\xf4\xc4"; main(){ char h,m=h=*t++,*x=t+2*h,c,i,l=*x,s=0; for (i=0;i<l;i++){ i%8? c<<=1: (c=*++x); c&128 && (s+=h); if (!(h>>=1)||!t[s+h]){ putchar(t[s]);h=m;s=0; }}}