Try with eve.select(col("id"),col("customerEvent.customerContext. anonymousCustomerChanges.analyticsId.id <http://customerevent.customercontext.anonymouscustomerchanges.analyticsid.id/> ")).show
This should work Thanks, Divya On 16 October 2016 at 19:59, Mark Mikolajczak - 07855 306 064 < m...@flayranalytics.co.uk> wrote: > Thanks Kim. > > Sorry It was a typo as I was doing the second part from my phone (Laptop > battery died). > > > The code I was using in zeppelin is: > eve.select($"id",$"customerEvent.customerContext.anonymousCustomerChanges. > analyticsId.id").show > > I tried with and with out the $ sign but still get the same error. > > Any advice? > > > On 16 Oct 2016, at 12:41, Jun Kim <i2r....@gmail.com> wrote: > > Hi, Mark Mikolajczak > > I think it should be > > eve.select("id", "customerEvent.customerContext.anonymousCustomerChanges. > analyticsId.id > <http://customerevent.customercontext.anonymouscustomerchanges.analyticsid.id/> > ") > > You missed 'customerEvent'! > > :-) > > 2016년 10월 16일 (일) 오후 8:32, Flayranalytics <m...@flayranalytics.co.uk>님이 > 작성: > > Hi, > Sorry forgot to include the code. > > eve.select($"id",$"customerContext.anonymousCustomerChanges.analyticsId.id > <http://customercontext.anonymouscustomerchanges.analyticsid.id/>").show() > > If I just use Id it works. I am seeing this happen when the data is an > array within my data. > > > > Sent from my 📲 > > On 16 Oct 2016, at 12:03, Mark Mikolajczak - 07855 306 064 < > m...@flayranalytics.co.uk> wrote: > > > > down votefavorite > <http://stackoverflow.com/questions/40064621/dataframe-in-apache-spark-error-java-lang-arrayindexoutofboundsexception#> > > <http://stackoverflow.com/questions/40064621/dataframe-in-apache-spark-error-java-lang-arrayindexoutofboundsexception#> > > Hi, > > I have setup a spark dataframe but I have issues when trying to run query > on some of the data. If I run on META_ID it will work but when I try to run > on any of the customerEvent it fails. I am running apache Zeppelin in EMR > with Spark 1.6.2. I not sure why this error is happening so let me know if > you have seen this before? I was thinking that its possibly the automatic > data frame not creating the correct schema so should this be done manually? > > Scheme > > root > |-- META_ID: string (nullable = true) > |-- businessEventType: string (nullable = true) > |-- customerEvent: struct (nullable = true) > | |-- customerContext: struct (nullable = true) > | | |-- anonymousCustomerChanges: struct (nullable = true) > | | | |-- analyticsId: struct (nullable = true) > | | | | |-- id: string (nullable = true) > | | | | |-- system: string (nullable = true) > > > Error > > org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in > stage 92.0 failed 4 times, most recent failure: Lost task 0.3 in stage 92.0 > (TID 137, ip-10-90-200-51.eu-west-1.compute.internal): > java.lang.ArrayIndexOutOfBoundsException: 1 > at > org.apache.spark.sql.catalyst.CatalystTypeConverters$StructConverter.toCatalystImpl(CatalystTypeConverters.scala:260) > at > org.apache.spark.sql.catalyst.CatalystTypeConverters$StructConverter.toCatalystImpl(CatalystTypeConverters.scala:250) > at > org.apache.spark.sql.catalyst.CatalystTypeConverters$CatalystTypeConverter.toCatalyst(CatalystTypeConverters.scala:102) > at > org.apache.spark.sql.catalyst.CatalystTypeConverters$$anonfun$createToCatalystConverter$2.apply(CatalystTypeConverters.scala:401) > at > org.apache.spark.sql.execution.RDDConversions$$anonfun$rowToRowRdd$1$$anonfun$apply$2.apply(ExistingRDD.scala:59) > at > org.apache.spark.sql.execution.RDDConversions$$anonfun$rowToRowRdd$1$$anonfun$apply$2.apply(ExistingRDD.scala:56) > at scala.collection.Iterator$$anon$11.next(Iterator.scala:328) > at scala.collection.Iterator$$anon$11.next(Iterator.scala:328) > at scala.collection.Iterator$$anon$11.next(Iterator.scala:328) > at scala.collection.Iterator$$anon$11.next(Iterator.scala:328) > at scala.collection.Iterator$$anon$10.next(Iterator.scala:312) > at scala.collection.Iterator$class.foreach(Iterator.scala:727) > at scala.collection.AbstractIterator.foreach(Iterator.scala:1157) > at > scala.collection.generic.Growable$class.$plus$plus$eq(Growable.scala:48) > at > scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:103) > at > scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:47) > at scala.collection.TraversableOnce$class.to(TraversableOnce.scala:273) > at scala.collection.AbstractIterator.to > <http://scala.collection.abstractiterator.to/>(Iterator.scala:1157) > at > scala.collection.TraversableOnce$class.toBuffer(TraversableOnce.scala:265) > at scala.collection.AbstractIterator.toBuffer(Iterator.scala:1157) > at > scala.collection.TraversableOnce$class.toArray(TraversableOnce.scala:252) > at scala.collection.AbstractIterator.toArray(Iterator.scala:1157) > at > org.apache.spark.sql.execution.SparkPlan$$anonfun$5.apply(SparkPlan.scala:212) > at > org.apache.spark.sql.execution.SparkPlan$$anonfun$5.apply(SparkPlan.scala:212) > at > org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:1858) > at > org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:1858) > at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:66) > at org.apache.spark.scheduler.Task.run(Task.scala:89) > at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:227) > at > java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145) > at > java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615) > at java.lang.Thread.run(Thread.java:745) > Driver stacktrace: > at org.apache.spark.scheduler.DAGScheduler.org > <http://org.apache.spark.scheduler.dagscheduler.org/>$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1431) > at > org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1419) > at > org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1418) > at > scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59) > at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47) > at > org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1418) > at > org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:799) > at > org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:799) > at scala.Option.foreach(Option.scala:236) > at > org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:799) > at > org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:1640) > at > org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1599) > at > org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1588) > at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:48) > at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:620) > at org.apache.spark.SparkContext.runJob(SparkContext.scala:1832) > at org.apache.spark.SparkContext.runJob(SparkContext.scala:1845) > at org.apache.spark.SparkContext.runJob(SparkContext.scala:1858) > at > org.apache.spark.sql.execution.SparkPlan.executeTake(SparkPlan.scala:212) > at > org.apache.spark.sql.execution.Limit.executeCollect(basicOperators.scala:165) > at > org.apache.spark.sql.execution.SparkPlan.executeCollectPublic(SparkPlan.scala:174) > at > org.apache.spark.sql.DataFrame$$anonfun$org$apache$spark$sql$DataFrame$$execute$1$1.apply(DataFrame.scala:1499) > at > org.apache.spark.sql.DataFrame$$anonfun$org$apache$spark$sql$DataFrame$$execute$1$1.apply(DataFrame.scala:1499) > at > org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:56) > at org.apache.spark.sql.DataFrame.withNewExecutionId(DataFrame.scala:2086) > at org.apache.spark.sql.DataFrame.org > <http://org.apache.spark.sql.dataframe.org/>$apache$spark$sql$DataFrame$$execute$1(DataFrame.scala:1498) > at org.apache.spark.sql.DataFrame.org > <http://org.apache.spark.sql.dataframe.org/>$apache$spark$sql$DataFrame$$collect(DataFrame.scala:1505) > at > org.apache.spark.sql.DataFrame$$anonfun$head$1.apply(DataFrame.scala:1375) > at > org.apache.spark.sql.DataFrame$$anonfun$head$1.apply(DataFrame.scala:1374) > at org.apache.spark.sql.DataFrame.withCallback(DataFrame.scala:2099) > at org.apache.spark.sql.DataFrame.head(DataFrame.scala:1374) > at org.apache.spark.sql.DataFrame.take(DataFrame.scala:1456) > at org.apache.spark.sql.DataFrame.showString(DataFrame.scala:170) > at org.apache.spark.sql.DataFrame.show(DataFrame.scala:350) > at org.apache.spark.sql.DataFrame.show(DataFrame.scala:311) > at org.apache.spark.sql.DataFrame.show(DataFrame.scala:319) > at > $iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:43) > at > $iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:48) > at $iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:50) > at $iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:52) > at $iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:54) > at $iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:56) > at $iwC$$iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:58) > at $iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:60) > at $iwC$$iwC$$iwC$$iwC.<init>(<console>:62) > at $iwC$$iwC$$iwC.<init>(<console>:64) > at $iwC$$iwC.<init>(<console>:66) > at $iwC.<init>(<console>:68) > at <init>(<console>:70) > at .<init>(<console>:74) > at .<clinit>(<console>) > at .<init>(<console>:7) > at .<clinit>(<console>) > at $print(<console>) > at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) > at > sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57) > at > sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) > at java.lang.reflect.Method.invoke(Method.java:606) > at > org.apache.spark.repl.SparkIMain$ReadEvalPrint.call(SparkIMain.scala:1065) > at > org.apache.spark.repl.SparkIMain$Request.loadAndRun(SparkIMain.scala:1346) > at org.apache.spark.repl.SparkIMain.loadAndRunReq$1(SparkIMain.scala:840) > at org.apache.spark.repl.SparkIMain.interpret(SparkIMain.scala:871) > at org.apache.spark.repl.SparkIMain.interpret(SparkIMain.scala:819) > at > org.apache.zeppelin.spark.SparkInterpreter.interpretInput(SparkInterpreter.java:709) > at > org.apache.zeppelin.spark.SparkInterpreter.interpret(SparkInterpreter.java:674) > at > org.apache.zeppelin.spark.SparkInterpreter.interpret(SparkInterpreter.java:667) > at > org.apache.zeppelin.interpreter.ClassloaderInterpreter.interpret(ClassloaderInterpreter.java:57) > at > org.apache.zeppelin.interpreter.LazyOpenInterpreter.interpret(LazyOpenInterpreter.java:93) > at > org.apache.zeppelin.interpreter.remote.RemoteInterpreterServer$InterpretJob.jobRun(RemoteInterpreterServer.java:300) > at org.apache.zeppelin.scheduler.Job.run(Job.java:169) > at org.apache.zeppelin.scheduler.FIFOScheduler$1.run(FIFOScheduler.java:134) > at java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:471) > at java.util.concurrent.FutureTask.run(FutureTask.java:262) > at > java.util.concurrent.ScheduledThreadPoolExecutor$ScheduledFutureTask.access$201(ScheduledThreadPoolExecutor.java:178) > at > java.util.concurrent.ScheduledThreadPoolExecutor$ScheduledFutureTask.run(ScheduledThreadPoolExecutor.java:292) > at > java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145) > at > java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615) > at java.lang.Thread.run(Thread.java:745) > Caused by: java.lang.ArrayIndexOutOfBoundsException: 1 > at > org.apache.spark.sql.catalyst.CatalystTypeConverters$StructConverter.toCatalystImpl(CatalystTypeConverters.scala:260) > at > org.apache.spark.sql.catalyst.CatalystTypeConverters$StructConverter.toCatalystImpl(CatalystTypeConverters.scala:250) > at > org.apache.spark.sql.catalyst.CatalystTypeConverters$CatalystTypeConverter.toCatalyst(CatalystTypeConverters.scala:102) > at > org.apache.spark.sql.catalyst.CatalystTypeConverters$$anonfun$createToCatalystConverter$2.apply(CatalystTypeConverters.scala:401) > at > org.apache.spark.sql.execution.RDDConversions$$anonfun$rowToRowRdd$1$$anonfun$apply$2.apply(ExistingRDD.scala:59) > at > org.apache.spark.sql.execution.RDDConversions$$anonfun$rowToRowRdd$1$$anonfun$apply$2.apply(ExistingRDD.scala:56) > at scala.collection.Iterator$$anon$11.next(Iterator.scala:328) > at scala.collection.Iterator$$anon$11.next(Iterator.scala:328) > at scala.collection.Iterator$$anon$11.next(Iterator.scala:328) > at scala.collection.Iterator$$anon$11.next(Iterator.scala:328) > at scala.collection.Iterator$$anon$10.next(Iterator.scala:312) > at scala.collection.Iterator$class.foreach(Iterator.scala:727) > at scala.collection.AbstractIterator.foreach(Iterator.scala:1157) > at > scala.collection.generic.Growable$class.$plus$plus$eq(Growable.scala:48) > at > scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:103) > at > scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:47) > at scala.collection.TraversableOnce$class.to(TraversableOnce.scala:273) > at scala.collection.AbstractIterator.to > <http://scala.collection.abstractiterator.to/>(Iterator.scala:1157) > at > scala.collection.TraversableOnce$class.toBuffer(TraversableOnce.scala:265) > at scala.collection.AbstractIterator.toBuffer(Iterator.scala:1157) > at > scala.collection.TraversableOnce$class.toArray(TraversableOnce.scala:252) > at scala.collection.AbstractIterator.toArray(Iterator.scala:1157) > at > org.apache.spark.sql.execution.SparkPlan$$anonfun$5.apply(SparkPlan.scala:212) > at > org.apache.spark.sql.execution.SparkPlan$$anonfun$5.apply(SparkPlan.scala:212) > at > org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:1858) > at > org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:1858) > at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:66) > > > > > > -- > Taejun Kim > > Data Mining Lab. > School of Electrical and Computer Engineering > University of Seoul > > >