Why would you want to run spark-shell from zeppelin? as I see it spark-shell in a REPL tool for spark and zeppelin is a REPL tool for spark (and others...) Eran
On Wed, Jul 22, 2015 at 3:47 PM 江之源 <jiangzhiy...@liulishuo.com> wrote: > ok it works! 3q > And i have an another question about shell > The shell could work when type some simple commands.but it couldn’t work > when i wanna to start a spark shell or spark submit even the sudo command. > I wanna know the shell interpreter’s limit. why it always call > Process exited with an error: 1 (Exit value: 1) when i type sudo or > spark-submit > > and when i type spark-shell it feedback: > > > setting ulimit -m to 57671680 Spark assembly has been built with Hive, > including Datanucleus jars on classpath SLF4J: Class path contains multiple > SLF4J bindings. SLF4J: Found binding in > [jar:file:/home/pipeline/zeppelin-manager/zeppelin-0.5.0-incubating-SNAPSHOT/interpreter/sh/slf4j-log4j12-1.7.10.jar!/org/slf4j/impl/StaticLoggerBinder.class] > SLF4J: Found binding in > [jar:file:/home/pipeline/zeppelin-manager/zeppelin-0.5.0-incubating-SNAPSHOT/lib/slf4j-log4j12-1.7.10.jar!/org/slf4j/impl/StaticLoggerBinder.class] > SLF4J: Found binding in > [jar:file:/opt/simple-spark.1.3.0/lib/spark-assembly-1.3.0-hadoop2.0.0-mr1-cdh4.2.0.jar!/org/slf4j/impl/StaticLoggerBinder.class] > SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an > explanation. SLF4J: Actual binding is of type > [org.slf4j.impl.Log4jLoggerFactory] log4j:ERROR setFile(null,true) call > failed. java.io.FileNotFoundException: (没有那个文件或目录) at > java.io.FileOutputStream.open(Native Method) at > java.io.FileOutputStream.<init>(FileOutputStream.java:221) at > java.io.FileOutputStream.<init>(FileOutputStream.java:142) at > org.apache.log4j.FileAppender.setFile(FileAppender.java:294) at > org.apache.log4j.FileAppender.activateOptions(FileAppender.java:165) at > org.apache.log4j.DailyRollingFileAppender.activateOptions(DailyRollingFileAppender.java:223) > at org.apache.log4j.config.PropertySetter.activate(PropertySetter.java:307) > at > org.apache.log4j.config.PropertySetter.setProperties(PropertySetter.java:172) > at > org.apache.log4j.config.PropertySetter.setProperties(PropertySetter.java:104) > at > org.apache.log4j.PropertyConfigurator.parseAppender(PropertyConfigurator.java:842) > at > org.apache.log4j.PropertyConfigurator.parseCategory(PropertyConfigurator.java:768) > at > org.apache.log4j.PropertyConfigurator.configureRootCategory(PropertyConfigurator.java:648) > at > org.apache.log4j.PropertyConfigurator.doConfigure(PropertyConfigurator.java:514) > at > org.apache.log4j.PropertyConfigurator.doConfigure(PropertyConfigurator.java:580) > at > org.apache.log4j.helpers.OptionConverter.selectAndConfigure(OptionConverter.java:526) > at org.apache.log4j.LogManager.<clinit>(LogManager.java:127) at > org.slf4j.impl.Log4jLoggerFactory.getLogger(Log4jLoggerFactory.java:64) at > org.slf4j.LoggerFactory.getLogger(LoggerFactory.java:285) at > org.apache.commons.logging.impl.SLF4JLogFactory.getInstance(SLF4JLogFactory.java:155) > at > org.apache.commons.logging.impl.SLF4JLogFactory.getInstance(SLF4JLogFactory.java:132) > at org.apache.commons.logging.LogFactory.getLog(LogFactory.java:685) at > org.apache.hadoop.security.UserGroupInformation.<clinit>(UserGroupInformation.java:78) > at > org.apache.spark.util.Utils$$anonfun$getCurrentUserName$1.apply(Utils.scala:1996) > at > org.apache.spark.util.Utils$$anonfun$getCurrentUserName$1.apply(Utils.scala:1996) > at scala.Option.getOrElse(Option.scala:120) at > org.apache.spark.util.Utils$.getCurrentUserName(Utils.scala:1996) at > org.apache.spark.SecurityManager.<init>(SecurityManager.scala:207) at > org.apache.spark.repl.SparkIMain.<init>(SparkIMain.scala:118) at > org.apache.spark.repl.SparkILoop$SparkILoopInterpreter.<init>(SparkILoop.scala:187) > at org.apache.spark.repl.SparkILoop.createInterpreter(SparkILoop.scala:216) > at > org.apache.spark.repl.SparkILoop$$anonfun$org$apache$spark$repl$SparkILoop$$process$1.apply$mcZ$sp(SparkILoop.scala:948) > at > org.apache.spark.repl.SparkILoop$$anonfun$org$apache$spark$repl$SparkILoop$$process$1.apply(SparkILoop.scala:944) > at > org.apache.spark.repl.SparkILoop$$anonfun$org$apache$spark$repl$SparkILoop$$process$1.apply(SparkILoop.scala:944) > at > scala.tools.nsc.util.ScalaClassLoader$.savingContextLoader(ScalaClassLoader.scala:135) > at > org.apache.spark.repl.SparkILoop.org$apache$spark$repl$SparkILoop$$process(SparkILoop.scala:944) > at org.apache.spark.repl.SparkILoop.process(SparkILoop.scala:1058) at > org.apache.spark.repl.Main$.main(Main.scala:31) at > org.apache.spark.repl.Main.main(Main.scala) at > sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at > sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57) > at > sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) > at java.lang.reflect.Method.invoke(Method.java:606) at > org.apache.spark.deploy.SparkSubmit$.org$apache$spark$deploy$SparkSubmit$$runMain(SparkSubmit.scala:569) > at org.apache.spark.deploy.SparkSubmit$.doRunMain$1(SparkSubmit.scala:166) > at org.apache.spark.deploy.SparkSubmit$.submit(SparkSubmit.scala:189) at > org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:110) at > org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala) log4j:ERROR > Either File or DatePattern options are not set for appender [dailyfile]. > Welcome to ____ __ / __/__ ___ _____/ /__ _\ \/ _ \/ _ `/ __/ '_/ /___/ > .__/\_,_/_/ /_/\_\ version 1.3.0 /_/ Using Scala version 2.10.4 (OpenJDK > 64-Bit Server VM, Java 1.7.0_71) Type in expressions to have them > evaluated. Type :help for more information. > org.apache.spark.SparkException: Found both spark.executor.extraClassPath > and SPARK_CLASSPATH. Use only the former. at > org.apache.spark.SparkConf$$anonfun$validateSettings$6$$anonfun$apply$7.apply(SparkConf.scala:339) > at > org.apache.spark.SparkConf$$anonfun$validateSettings$6$$anonfun$apply$7.apply(SparkConf.scala:337) > at scala.collection.immutable.List.foreach(List.scala:318) at > org.apache.spark.SparkConf$$anonfun$validateSettings$6.apply(SparkConf.scala:337) > at > org.apache.spark.SparkConf$$anonfun$validateSettings$6.apply(SparkConf.scala:325) > at scala.Option.foreach(Option.scala:236) at > org.apache.spark.SparkConf.validateSettings(SparkConf.scala:325) at > org.apache.spark.SparkContext.<init>(SparkContext.scala:197) at > org.apache.spark.repl.SparkILoop.createSparkContext(SparkILoop.scala:1016) > at $iwC$$iwC.<init>(<console>:9) at $iwC.<init>(<console>:18) at > <init>(<console>:20) at .<init>(<console>:24) at .<clinit>(<console>) at > .<init>(<console>:7) at .<clinit>(<console>) at $print(<console>) at > sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at > sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57) > at > sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) > at java.lang.reflect.Method.invoke(Method.java:606) at > org.apache.spark.repl.SparkIMain$ReadEvalPrint.call(SparkIMain.scala:1065) > at > org.apache.spark.repl.SparkIMain$Request.loadAndRun(SparkIMain.scala:1338) > at org.apache.spark.repl.SparkIMain.loadAndRunReq$1(SparkIMain.scala:840) > at org.apache.spark.repl.SparkIMain.interpret(SparkIMain.scala:871) at > org.apache.spark.repl.SparkIMain.interpret(SparkIMain.scala:819) at > org.apache.spark.repl.SparkILoop.reallyInterpret$1(SparkILoop.scala:856) at > org.apache.spark.repl.SparkILoop.interpretStartingWith(SparkILoop.scala:901) > at org.apache.spark.repl.SparkILoop.command(SparkILoop.scala:813) at > org.apache.spark.repl.SparkILoopInit$$anonfun$initializeSpark$1.apply(SparkILoopInit.scala:123) > at > org.apache.spark.repl.SparkILoopInit$$anonfun$initializeSpark$1.apply(SparkILoopInit.scala:122) > at org.apache.spark.repl.SparkIMain.beQuietDuring(SparkIMain.scala:324) > at > org.apache.spark.repl.SparkILoopInit$class.initializeSpark(SparkILoopInit.scala:122) > at org.apache.spark.repl.SparkILoop.initializeSpark(SparkILoop.scala:64) at > org.apache.spark.repl.SparkILoop$$anonfun$org$apache$spark$repl$SparkILoop$$process$1$$anonfun$apply$mcZ$sp$5.apply$mcV$sp(SparkILoop.scala:973) > at > org.apache.spark.repl.SparkILoopInit$class.runThunks(SparkILoopInit.scala:157) > at org.apache.spark.repl.SparkILoop.runThunks(SparkILoop.scala:64) at > org.apache.spark.repl.SparkILoopInit$class.postInitialization(SparkILoopInit.scala:106) > at org.apache.spark.repl.SparkILoop.postInitialization(SparkILoop.scala:64) > at > org.apache.spark.repl.SparkILoop$$anonfun$org$apache$spark$repl$SparkILoop$$process$1.apply$mcZ$sp(SparkILoop.scala:990) > at > org.apache.spark.repl.SparkILoop$$anonfun$org$apache$spark$repl$SparkILoop$$process$1.apply(SparkILoop.scala:944) > at > org.apache.spark.repl.SparkILoop$$anonfun$org$apache$spark$repl$SparkILoop$$process$1.apply(SparkILoop.scala:944) > at > scala.tools.nsc.util.ScalaClassLoader$.savingContextLoader(ScalaClassLoader.scala:135) > at > org.apache.spark.repl.SparkILoop.org$apache$spark$repl$SparkILoop$$process(SparkILoop.scala:944) > at org.apache.spark.repl.SparkILoop.process(SparkILoop.scala:1058) at > org.apache.spark.repl.Main$.main(Main.scala:31) at > org.apache.spark.repl.Main.main(Main.scala) at > sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at > sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57) > at > sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) > at java.lang.reflect.Method.invoke(Method.java:606) at > org.apache.spark.deploy.SparkSubmit$.org$apache$spark$deploy$SparkSubmit$$runMain(SparkSubmit.scala:569) > at org.apache.spark.deploy.SparkSubmit$.doRunMain$1(SparkSubmit.scala:166) > at org.apache.spark.deploy.SparkSubmit$.submit(SparkSubmit.scala:189) at > org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:110) at > org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala) > java.lang.NullPointerException at > org.apache.spark.sql.SQLContext.<init>(SQLContext.scala:141) at > org.apache.spark.sql.hive.HiveContext.<init>(HiveContext.scala:49) at > sun.reflect.NativeConstructorAccessorImpl.newInstance0(Native Method) at > sun.reflect.NativeConstructorAccessorImpl.newInstance(NativeConstructorAccessorImpl.java:57) > at > sun.reflect.DelegatingConstructorAccessorImpl.newInstance(DelegatingConstructorAccessorImpl.java:45) > at java.lang.reflect.Constructor.newInstance(Constructor.java:526) at > org.apache.spark.repl.SparkILoop.createSQLContext(SparkILoop.scala:1027) at > $iwC$$iwC.<init>(<console>:9) > <console>:10: error: not found: value sqlContext import > sqlContext.implicits._ ^ <console>:10: error: not found: value sqlContext > import sqlContext.sql ^ scala> Stopping spark context. <console>:14: error: > not found: value sc sc.stop() ^ > > On Jul 22, 2015, at 8:36 PM, Alexander Bezzubov <abezzu...@nflabs.com> > wrote: > > Hi, > > those are very valid steps indeed and you do not need to build custom > spark version. > > Hope this helps! > > On Tue, Jul 21, 2015 at 7:46 PM, 江之源 <jiangzhiy...@liulishuo.com> wrote: > > hi > To install the zeppelin with z-manager is a helpless method, because i > install the zeppelin in manually way and failed.I have tried many many > times. > My cluster is spark1.3.0 hadoop 2.0.0-cdh4.5.0,and the model is standalone. > I will install the zeppelin manually right now so i wanna you check my > steps: > > 1. git clone the repository from the github. > 2. mvn clean package > 3. mvn install -DskipTests -Dspark.version=1.3.0 > -Dhadoop.version=2.0.0-cdh4.5.0 > (did zeppelin support cdh4.5.0) > Should i have to do the custom built spark > like(-Dspark.version=1.1.0-Custom) > 4.modify my master spark://...:7077 > Is it completed? or i lost something please tell me. > thanks > jzy > > 在 2015年7月21日,下午5:48,Alexander Bezzubov <abezzu...@nflabs.com> 写道: > > Hi, > > thank you for your interest in the project! > > It seems like the best way to get Zeppelin up and running in your case > would be to build it manually with relevant Spark\Hadoop options as > described here > http://zeppelin.incubator.apache.org/docs/install/install.html > > Please, let me know if that helps. > > -- > BR, > Alex > > On Tue, Jul 21, 2015 at 11:35 AM, 江之源 <jiangzhiy...@liulishuo.com> wrote: > > hi > i installed zeppelin some time before, but it always failed in my server > cluster. i found the z-management Occasionally. I installed and success in > my server. But when i wanna to read in my HDFS file like: > > sc.textFile("hdfs://llscluster/tmp/jzyresult/part-04093").count() > > > it throw the errors in my cluster:Job aborted due to stage failure: Task 15 > in stage 6.0 failed 4 times, most recent failure: Lost task 15.3 in stage > 6.0 (TID 386, lls7): java.io.EOFException > > when i modify it to the local model, it could read HDFS file successfully. > My cluster is Spark1.3.0 Hadoop2.0.0-CDH4.5.0. but the install options just > have Spark1.3.0 and Hadoop2.0.0-CDH-4.7.0. Is this the cause to read HDFS > file failed? > Look forward to your reply! > THANK YOU! > JZY > > > > > -- > -- > Kind regards, > Alexander. > > > > > > -- > -- > Kind regards, > Alexander. > > >