Why would you want to run spark-shell from zeppelin? as I see it
spark-shell in a REPL tool for spark and zeppelin is a REPL tool for spark
(and others...)
Eran

On Wed, Jul 22, 2015 at 3:47 PM 江之源 <jiangzhiy...@liulishuo.com> wrote:

> ok it works! 3q
> And i have an another question about shell
> The shell could work when type some simple commands.but it couldn’t work
> when i wanna to start a spark shell or spark submit even the sudo command.
> I wanna know the shell interpreter’s limit. why it always call
> Process exited with an error: 1 (Exit value: 1) when i type sudo or
> spark-submit
>
> and when i type spark-shell it feedback:
>
>
> setting ulimit -m to 57671680 Spark assembly has been built with Hive,
> including Datanucleus jars on classpath SLF4J: Class path contains multiple
> SLF4J bindings. SLF4J: Found binding in
> [jar:file:/home/pipeline/zeppelin-manager/zeppelin-0.5.0-incubating-SNAPSHOT/interpreter/sh/slf4j-log4j12-1.7.10.jar!/org/slf4j/impl/StaticLoggerBinder.class]
> SLF4J: Found binding in
> [jar:file:/home/pipeline/zeppelin-manager/zeppelin-0.5.0-incubating-SNAPSHOT/lib/slf4j-log4j12-1.7.10.jar!/org/slf4j/impl/StaticLoggerBinder.class]
> SLF4J: Found binding in
> [jar:file:/opt/simple-spark.1.3.0/lib/spark-assembly-1.3.0-hadoop2.0.0-mr1-cdh4.2.0.jar!/org/slf4j/impl/StaticLoggerBinder.class]
> SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an
> explanation. SLF4J: Actual binding is of type
> [org.slf4j.impl.Log4jLoggerFactory] log4j:ERROR setFile(null,true) call
> failed. java.io.FileNotFoundException: (没有那个文件或目录) at
> java.io.FileOutputStream.open(Native Method) at
> java.io.FileOutputStream.<init>(FileOutputStream.java:221) at
> java.io.FileOutputStream.<init>(FileOutputStream.java:142) at
> org.apache.log4j.FileAppender.setFile(FileAppender.java:294) at
> org.apache.log4j.FileAppender.activateOptions(FileAppender.java:165) at
> org.apache.log4j.DailyRollingFileAppender.activateOptions(DailyRollingFileAppender.java:223)
> at org.apache.log4j.config.PropertySetter.activate(PropertySetter.java:307)
> at
> org.apache.log4j.config.PropertySetter.setProperties(PropertySetter.java:172)
> at
> org.apache.log4j.config.PropertySetter.setProperties(PropertySetter.java:104)
> at
> org.apache.log4j.PropertyConfigurator.parseAppender(PropertyConfigurator.java:842)
> at
> org.apache.log4j.PropertyConfigurator.parseCategory(PropertyConfigurator.java:768)
> at
> org.apache.log4j.PropertyConfigurator.configureRootCategory(PropertyConfigurator.java:648)
> at
> org.apache.log4j.PropertyConfigurator.doConfigure(PropertyConfigurator.java:514)
> at
> org.apache.log4j.PropertyConfigurator.doConfigure(PropertyConfigurator.java:580)
> at
> org.apache.log4j.helpers.OptionConverter.selectAndConfigure(OptionConverter.java:526)
> at org.apache.log4j.LogManager.<clinit>(LogManager.java:127) at
> org.slf4j.impl.Log4jLoggerFactory.getLogger(Log4jLoggerFactory.java:64) at
> org.slf4j.LoggerFactory.getLogger(LoggerFactory.java:285) at
> org.apache.commons.logging.impl.SLF4JLogFactory.getInstance(SLF4JLogFactory.java:155)
> at
> org.apache.commons.logging.impl.SLF4JLogFactory.getInstance(SLF4JLogFactory.java:132)
> at org.apache.commons.logging.LogFactory.getLog(LogFactory.java:685) at
> org.apache.hadoop.security.UserGroupInformation.<clinit>(UserGroupInformation.java:78)
> at
> org.apache.spark.util.Utils$$anonfun$getCurrentUserName$1.apply(Utils.scala:1996)
> at
> org.apache.spark.util.Utils$$anonfun$getCurrentUserName$1.apply(Utils.scala:1996)
> at scala.Option.getOrElse(Option.scala:120) at
> org.apache.spark.util.Utils$.getCurrentUserName(Utils.scala:1996) at
> org.apache.spark.SecurityManager.<init>(SecurityManager.scala:207) at
> org.apache.spark.repl.SparkIMain.<init>(SparkIMain.scala:118) at
> org.apache.spark.repl.SparkILoop$SparkILoopInterpreter.<init>(SparkILoop.scala:187)
> at org.apache.spark.repl.SparkILoop.createInterpreter(SparkILoop.scala:216)
> at
> org.apache.spark.repl.SparkILoop$$anonfun$org$apache$spark$repl$SparkILoop$$process$1.apply$mcZ$sp(SparkILoop.scala:948)
> at
> org.apache.spark.repl.SparkILoop$$anonfun$org$apache$spark$repl$SparkILoop$$process$1.apply(SparkILoop.scala:944)
> at
> org.apache.spark.repl.SparkILoop$$anonfun$org$apache$spark$repl$SparkILoop$$process$1.apply(SparkILoop.scala:944)
> at
> scala.tools.nsc.util.ScalaClassLoader$.savingContextLoader(ScalaClassLoader.scala:135)
> at 
> org.apache.spark.repl.SparkILoop.org$apache$spark$repl$SparkILoop$$process(SparkILoop.scala:944)
> at org.apache.spark.repl.SparkILoop.process(SparkILoop.scala:1058) at
> org.apache.spark.repl.Main$.main(Main.scala:31) at
> org.apache.spark.repl.Main.main(Main.scala) at
> sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at
> sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57)
> at
> sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
> at java.lang.reflect.Method.invoke(Method.java:606) at
> org.apache.spark.deploy.SparkSubmit$.org$apache$spark$deploy$SparkSubmit$$runMain(SparkSubmit.scala:569)
> at org.apache.spark.deploy.SparkSubmit$.doRunMain$1(SparkSubmit.scala:166)
> at org.apache.spark.deploy.SparkSubmit$.submit(SparkSubmit.scala:189) at
> org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:110) at
> org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala) log4j:ERROR
> Either File or DatePattern options are not set for appender [dailyfile].
> Welcome to ____ __ / __/__ ___ _____/ /__ _\ \/ _ \/ _ `/ __/ '_/ /___/
> .__/\_,_/_/ /_/\_\ version 1.3.0 /_/ Using Scala version 2.10.4 (OpenJDK
> 64-Bit Server VM, Java 1.7.0_71) Type in expressions to have them
> evaluated. Type :help for more information.
> org.apache.spark.SparkException: Found both spark.executor.extraClassPath
> and SPARK_CLASSPATH. Use only the former. at
> org.apache.spark.SparkConf$$anonfun$validateSettings$6$$anonfun$apply$7.apply(SparkConf.scala:339)
> at
> org.apache.spark.SparkConf$$anonfun$validateSettings$6$$anonfun$apply$7.apply(SparkConf.scala:337)
> at scala.collection.immutable.List.foreach(List.scala:318) at
> org.apache.spark.SparkConf$$anonfun$validateSettings$6.apply(SparkConf.scala:337)
> at
> org.apache.spark.SparkConf$$anonfun$validateSettings$6.apply(SparkConf.scala:325)
> at scala.Option.foreach(Option.scala:236) at
> org.apache.spark.SparkConf.validateSettings(SparkConf.scala:325) at
> org.apache.spark.SparkContext.<init>(SparkContext.scala:197) at
> org.apache.spark.repl.SparkILoop.createSparkContext(SparkILoop.scala:1016)
> at $iwC$$iwC.<init>(<console>:9) at $iwC.<init>(<console>:18) at
> <init>(<console>:20) at .<init>(<console>:24) at .<clinit>(<console>) at
> .<init>(<console>:7) at .<clinit>(<console>) at $print(<console>) at
> sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at
> sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57)
> at
> sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
> at java.lang.reflect.Method.invoke(Method.java:606) at
> org.apache.spark.repl.SparkIMain$ReadEvalPrint.call(SparkIMain.scala:1065)
> at
> org.apache.spark.repl.SparkIMain$Request.loadAndRun(SparkIMain.scala:1338)
> at org.apache.spark.repl.SparkIMain.loadAndRunReq$1(SparkIMain.scala:840)
> at org.apache.spark.repl.SparkIMain.interpret(SparkIMain.scala:871) at
> org.apache.spark.repl.SparkIMain.interpret(SparkIMain.scala:819) at
> org.apache.spark.repl.SparkILoop.reallyInterpret$1(SparkILoop.scala:856) at
> org.apache.spark.repl.SparkILoop.interpretStartingWith(SparkILoop.scala:901)
> at org.apache.spark.repl.SparkILoop.command(SparkILoop.scala:813) at
> org.apache.spark.repl.SparkILoopInit$$anonfun$initializeSpark$1.apply(SparkILoopInit.scala:123)
> at
> org.apache.spark.repl.SparkILoopInit$$anonfun$initializeSpark$1.apply(SparkILoopInit.scala:122)
> at org.apache.spark.repl.SparkIMain.beQuietDuring(SparkIMain.scala:324)
> at
> org.apache.spark.repl.SparkILoopInit$class.initializeSpark(SparkILoopInit.scala:122)
> at org.apache.spark.repl.SparkILoop.initializeSpark(SparkILoop.scala:64) at
> org.apache.spark.repl.SparkILoop$$anonfun$org$apache$spark$repl$SparkILoop$$process$1$$anonfun$apply$mcZ$sp$5.apply$mcV$sp(SparkILoop.scala:973)
> at
> org.apache.spark.repl.SparkILoopInit$class.runThunks(SparkILoopInit.scala:157)
> at org.apache.spark.repl.SparkILoop.runThunks(SparkILoop.scala:64) at
> org.apache.spark.repl.SparkILoopInit$class.postInitialization(SparkILoopInit.scala:106)
> at org.apache.spark.repl.SparkILoop.postInitialization(SparkILoop.scala:64)
> at
> org.apache.spark.repl.SparkILoop$$anonfun$org$apache$spark$repl$SparkILoop$$process$1.apply$mcZ$sp(SparkILoop.scala:990)
> at
> org.apache.spark.repl.SparkILoop$$anonfun$org$apache$spark$repl$SparkILoop$$process$1.apply(SparkILoop.scala:944)
> at
> org.apache.spark.repl.SparkILoop$$anonfun$org$apache$spark$repl$SparkILoop$$process$1.apply(SparkILoop.scala:944)
> at
> scala.tools.nsc.util.ScalaClassLoader$.savingContextLoader(ScalaClassLoader.scala:135)
> at 
> org.apache.spark.repl.SparkILoop.org$apache$spark$repl$SparkILoop$$process(SparkILoop.scala:944)
> at org.apache.spark.repl.SparkILoop.process(SparkILoop.scala:1058) at
> org.apache.spark.repl.Main$.main(Main.scala:31) at
> org.apache.spark.repl.Main.main(Main.scala) at
> sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at
> sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57)
> at
> sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
> at java.lang.reflect.Method.invoke(Method.java:606) at
> org.apache.spark.deploy.SparkSubmit$.org$apache$spark$deploy$SparkSubmit$$runMain(SparkSubmit.scala:569)
> at org.apache.spark.deploy.SparkSubmit$.doRunMain$1(SparkSubmit.scala:166)
> at org.apache.spark.deploy.SparkSubmit$.submit(SparkSubmit.scala:189) at
> org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:110) at
> org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala)
> java.lang.NullPointerException at
> org.apache.spark.sql.SQLContext.<init>(SQLContext.scala:141) at
> org.apache.spark.sql.hive.HiveContext.<init>(HiveContext.scala:49) at
> sun.reflect.NativeConstructorAccessorImpl.newInstance0(Native Method) at
> sun.reflect.NativeConstructorAccessorImpl.newInstance(NativeConstructorAccessorImpl.java:57)
> at
> sun.reflect.DelegatingConstructorAccessorImpl.newInstance(DelegatingConstructorAccessorImpl.java:45)
> at java.lang.reflect.Constructor.newInstance(Constructor.java:526) at
> org.apache.spark.repl.SparkILoop.createSQLContext(SparkILoop.scala:1027) at
> $iwC$$iwC.<init>(<console>:9)
> <console>:10: error: not found: value sqlContext import
> sqlContext.implicits._ ^ <console>:10: error: not found: value sqlContext
> import sqlContext.sql ^ scala> Stopping spark context. <console>:14: error:
> not found: value sc sc.stop() ^
>
> On Jul 22, 2015, at 8:36 PM, Alexander Bezzubov <abezzu...@nflabs.com>
> wrote:
>
> Hi,
>
> those are very valid steps indeed and you do not need to build custom
> spark version.
>
> Hope this helps!
>
> On Tue, Jul 21, 2015 at 7:46 PM, 江之源 <jiangzhiy...@liulishuo.com> wrote:
>
> hi
> To install the zeppelin with z-manager is a helpless method, because i
> install the zeppelin in manually way and failed.I have tried many many
> times.
> My cluster is spark1.3.0 hadoop 2.0.0-cdh4.5.0,and the model is standalone.
> I will install the zeppelin manually right now so i wanna you check my
> steps:
>
> 1. git clone the repository from the github.
> 2. mvn clean package
> 3. mvn install -DskipTests -Dspark.version=1.3.0
> -Dhadoop.version=2.0.0-cdh4.5.0
> (did zeppelin support cdh4.5.0)
> Should i have to do the custom built spark
> like(-Dspark.version=1.1.0-Custom)
> 4.modify my master spark://...:7077
> Is it completed? or i lost something please tell me.
> thanks
> jzy
>
> 在 2015年7月21日,下午5:48,Alexander Bezzubov <abezzu...@nflabs.com> 写道:
>
> Hi,
>
> thank you for your interest in the project!
>
> It seems like the best way to get Zeppelin up and running in your case
> would be to build it manually with relevant Spark\Hadoop options as
> described here
> http://zeppelin.incubator.apache.org/docs/install/install.html
>
> Please, let me know if that helps.
>
> --
> BR,
> Alex
>
> On Tue, Jul 21, 2015 at 11:35 AM, 江之源 <jiangzhiy...@liulishuo.com> wrote:
>
> hi
> i installed zeppelin some time before, but it always failed in my server
> cluster. i found the z-management Occasionally. I installed and success in
> my server. But when i wanna to read in my HDFS file like:
>
> sc.textFile("hdfs://llscluster/tmp/jzyresult/part-04093").count()
>
>
> it throw the errors in my cluster:Job aborted due to stage failure: Task 15
> in stage 6.0 failed 4 times, most recent failure: Lost task 15.3 in stage
> 6.0 (TID 386, lls7): java.io.EOFException
>
> when i modify it to the local model, it could read HDFS file successfully.
> My cluster is Spark1.3.0 Hadoop2.0.0-CDH4.5.0. but the install options just
> have Spark1.3.0 and Hadoop2.0.0-CDH-4.7.0. Is this the cause to read HDFS
> file failed?
> Look forward to your reply!
> THANK YOU!
> JZY
>
>
>
>
> --
> --
> Kind regards,
> Alexander.
>
>
>
>
>
> --
> --
> Kind regards,
> Alexander.
>
>
>

Reply via email to