I am. Any suggested workarounds? I know I can add to ZEPPELIN_JAVA_OPTS, but seems less than ideal, given different users will have different dependencies.
Doesn't seem wise to give end-users access to customize ZEPPELIN_JAVA_OPTS and restart zeppelin server. On Mon, Aug 24, 2015 at 6:14 PM, moon soo Lee <m...@apache.org> wrote: > Hi Randy, > > z.load() supposed to make dependencies available to all driver and > executors. > > However, it might not work correctly in yarn-client mode. Are you using > yarn-client mode? > > Best, > moon > > On Mon, Aug 24, 2015 at 9:12 AM Randy Gelhausen <rgel...@gmail.com> wrote: > >> Any ideas? >> >> Is z.load supposed to make dependencies available to all Spark JVMs >> (driver AND executors)? >> >> Thanks, >> -Randy >> >> On Sun, Aug 23, 2015 at 2:41 PM, Randy Gelhausen <rgel...@gmail.com> >> wrote: >> >>> It seems Spark executors are not being provided with the requisite >>> dependencies. With spark-shell I can pass --jars /path/to/dep.jar. How can >>> we achieve this with Zeppelin, preferable inside a Note? >>> >>> %spark.dep >>> z.addRepo("hortonworks").url(" >>> http://repo.hortonworks.com/content/repositories/releases/") >>> z.load("org.apache.phoenix:phoenix-spark:4.4.0.2.3.0.0-2557") >>> z.load("org.apache.phoenix:phoenix-core:4.4.0.2.3.0.0-2557") >>> z.load("com.databricks:spark-csv_2.10:1.2.0") >>> >>> %spark >>> import org.apache.spark.sql._ >>> import org.apache.phoenix.spark._ >>> import java.sql.Connection >>> import java.sql.DriverManager >>> >>> val input = "/user/root/crimes/atlanta" >>> val zkUrl = "docker.dev:2181:/hbase-unsecure" >>> val table = "CRIMES" >>> >>> // Read CSV file, clean field names >>> var df = >>> sqlContext.read.format("com.databricks.spark.csv").option("header", >>> "true").option("DROPMALFORMED", "true").load(input) >>> val columns = df.columns.map(x => x.toUpperCase.replaceAll(" ", "_")) >>> df = df.toDF(columns:_*) >>> >>> df.save("org.apache.phoenix.spark", SaveMode.Overwrite, Map("table" -> >>> table, "zkUrl" -> zkUrl)) >>> >>> Results: >>> org.apache.spark.SparkException: Job aborted due to stage failure: Task >>> 0 in stage 1.0 failed 4 times, most recent failure: Lost task 0.3 in stage >>> 1.0 (TID 5, docker.dev): java.lang.RuntimeException: java.sql.SQLException: >>> No suitable driver found for jdbc:phoenix:docker.dev:2181:/hbase-unsecure; >>> at >>> org.apache.phoenix.mapreduce.PhoenixOutputFormat.getRecordWriter(PhoenixOutputFormat.java:58) >>> at >>> org.apache.spark.rdd.PairRDDFunctions$$anonfun$saveAsNewAPIHadoopDataset$1$$anonfun$12.apply(PairRDDFunctions.scala:1030) >>> at >>> org.apache.spark.rdd.PairRDDFunctions$$anonfun$saveAsNewAPIHadoopDataset$1$$anonfun$12.apply(PairRDDFunctions.scala:1014) >>> at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:63) at >>> org.apache.spark.scheduler.Task.run(Task.scala:70) at >>> org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:213) at >>> java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142) >>> at >>> java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617) >>> at java.lang.Thread.run(Thread.java:745) Caused by: java.sql.SQLException: >>> No suitable driver found for jdbc:phoenix:docker.dev:2181:/hbase-unsecure; >>> at java.sql.DriverManager.getConnection(DriverManager.java:689) at >>> java.sql.DriverManager.getConnection(DriverManager.java:208) at >>> org.apache.phoenix.mapreduce.util.ConnectionUtil.getConnection(ConnectionUtil.java:92) >>> at >>> org.apache.phoenix.mapreduce.util.ConnectionUtil.getOutputConnection(ConnectionUtil.java:80) >>> at >>> org.apache.phoenix.mapreduce.util.ConnectionUtil.getOutputConnection(ConnectionUtil.java:68) >>> at >>> org.apache.phoenix.mapreduce.PhoenixRecordWriter.<init>(PhoenixRecordWriter.java:49) >>> at >>> org.apache.phoenix.mapreduce.PhoenixOutputFormat.getRecordWriter(PhoenixOutputFormat.java:55) >>> ... 8 more Driver stacktrace: at >>> org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1273) >>> at >>> org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1264) >>> at >>> org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1263) >>> at >>> scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59) >>> at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47) at >>> org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1263) >>> at >>> org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:730) >>> at >>> org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:730) >>> at scala.Option.foreach(Option.scala:236) at >>> org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:730) >>> at >>> org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1457) >>> at >>> org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1418) >>> at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:48) >>> >> >>