Hi Todd,
   Thanks for the quick reply. I tried that option too and I go the error
below. Any idea?

<console>:102: error: overloaded method constructor StreamingContext with
alternatives: (path: String,sparkContext:
org.apache.spark.org.apache.spark.org.apache.spark.org.apache.spark.org.apache.spark.SparkContext)org.apache.spark.streaming.StreamingContext
<and> (path: String,hadoopConf:
org.apache.hadoop.conf.Configuration)org.apache.spark.streaming.StreamingContext
<and> (conf: org.apache.spark.SparkConf,batchDuration:
org.apache.spark.streaming.Duration)org.apache.spark.streaming.StreamingContext
<and> (sparkContext:
org.apache.spark.org.apache.spark.org.apache.spark.org.apache.spark.org.apache.spark.SparkContext,batchDuration:
org.apache.spark.streaming.Duration)org.apache.spark.streaming.StreamingContext
cannot be applied to
(org.apache.spark.org.apache.spark.org.apache.spark.org.apache.spark.org.apache.spark.SparkContext,
org.apache.spark.streaming.Duration) val ssc = new StreamingContext(sc,
Milliseconds(2000))

On 8 September 2015 at 13:53, Todd Nist <tsind...@gmail.com> wrote:

> You are passing a new SparkConf to the StreamingContext, which will cause
> the creation of a new SparkContext:
>
> *StreamingContext(conf: **SparkConf*
> <https://spark.apache.org/docs/1.4.1/api/scala/org/apache/spark/SparkConf.html>
> *, batchDuration: **Duration*
> <https://spark.apache.org/docs/1.4.1/api/scala/org/apache/spark/streaming/Duration.html>
> *)*
>
> Create a StreamingContext by providing the configuration necessary for a
> new SparkContext.
>
> Is there a reason you can not use the existing SparkContext created by
> Zeppelin?  Then you can just do something like:
>
> val ssc = new StreamingContext(sc, Milliseconds(
> SparkStreamingBatchInterval))
>
> ssc.checkpoint(SparkCheckpointDir)
>
> ...
>
> Where "sc" is the Zeppelin provided SparkContext.
>
> -Todd
>
>
>
> On Tue, Sep 8, 2015 at 8:11 AM, Sajeevan Achuthan <
> achuthan.sajee...@gmail.com> wrote:
>
>> Hi
>>   The problem is the Spark is allowing to create two contexts, See the
>> log below. Could you please let me know , how to fix this problem?
>>
>> WARN [2015-09-08 13:09:01,191] ({pool-2-thread-5}
>> Logging.scala[logWarning]:92) - Multiple running SparkContexts detected in
>> the same JVM!
>> org.apache.spark.SparkException: Only one SparkContext may be running in
>> this JVM (see SPARK-2243). To ignore this error, set
>> spark.driver.allowMultipleContexts = true. The currently running
>> SparkContext was created at:
>> org.apache.spark.SparkContext.<init>(SparkContext.scala:81)
>>
>> org.apache.zeppelin.spark.SparkInterpreter.createSparkContext(SparkInterpreter.java:301)
>>
>> org.apache.zeppelin.spark.SparkInterpreter.getSparkContext(SparkInterpreter.java:146)
>> org.apache.zeppelin.spark.SparkInterpreter.open(SparkInterpreter.java:423)
>>
>> org.apache.zeppelin.interpreter.ClassloaderInterpreter.open(ClassloaderInterpreter.java:73)
>>
>> org.apache.zeppelin.interpreter.LazyOpenInterpreter.open(LazyOpenInterpreter.java:68)
>>
>> org.apache.zeppelin.interpreter.LazyOpenInterpreter.interpret(LazyOpenInterpreter.java:92)
>>
>> org.apache.zeppelin.interpreter.remote.RemoteInterpreterServer$InterpretJob.jobRun(RemoteInterpreterServer.java:277)
>> org.apache.zeppelin.scheduler.Job.run(Job.java:170)
>> org.apache.zeppelin.scheduler.FIFOScheduler$1.run(FIFOScheduler.java:118)
>> java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:511)
>> java.util.concurrent.FutureTask.run(FutureTask.java:266)
>>
>> java.util.concurrent.ScheduledThreadPoolExecutor$ScheduledFutureTask.access$201(ScheduledThreadPoolExecutor.java:180)
>>
>> java.util.concurrent.ScheduledThreadPoolExecutor$ScheduledFutureTask.run(ScheduledThreadPoolExecutor.java:293)
>>
>> java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
>>
>> java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
>> java.lang.Thread.run(Thread.java:745)
>> at
>> org.apache.spark.SparkContext$$anonfun$assertNoOtherContextIsRunning$1.apply(SparkContext.scala:2083)
>> at
>> org.apache.spark.SparkContext$$anonfun$assertNoOtherContextIsRunning$1.apply(SparkContext.scala:2065)
>> at scala.Option.foreach(Option.scala:236)
>> at
>> org.apache.spark.SparkContext$.assertNoOtherContextIsRunning(SparkContext.scala:2065)
>> at
>> org.apache.spark.SparkContext$.setActiveContext(SparkContext.scala:2151)
>> at org.apache.spark.SparkContext.<init>(SparkContext.scala:2023)
>> at
>> org.apache.spark.streaming.StreamingContext$.createNewSparkContext(StreamingContext.scala:834)
>> at
>> org.apache.spark.streaming.StreamingContext.<init>(StreamingContext.scala:80)
>> at
>> $line58.$read$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:45)
>> at
>> $line58.$read$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:50)
>> at
>> $line58.$read$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:52)
>> at
>> $line58.$read$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:54)
>> at
>> $line58.$read$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:56)
>> at
>> $line58.$read$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:58)
>> at $line58.$
>> /Saj
>>
>> On 8 September 2015 at 12:25, Todd Nist <tsind...@gmail.com> wrote:
>>
>>> I do not see that your importing the following:
>>>
>>>  import org.apache.spark.sql._
>>>
>>> Which I believe is where you will find the DataFrame.toDF function.
>>>
>>> HTH.
>>>
>>> -Todd
>>>
>>> On Mon, Sep 7, 2015 at 5:49 PM, Sajeevan Achuthan <
>>> achuthan.sajee...@gmail.com> wrote:
>>>
>>>> Hi Moon,
>>>>    Thanks for the reply, I tried that option too. Unfortunately, I
>>>> tried that option too and I got the error
>>>> data: org.apache.spark.streaming.dstream.DStream[CELL_KPIS] =
>>>> org.apache.spark.streaming.dstream.MappedDStream@5f3ea8bb
>>>> <console>:49: error: value toDF is not a member of
>>>> org.apache.spark.rdd.RDD[CELL_KPIS]
>>>> accessLogs.toDF.registerTempTable("RAS") ^
>>>> Any idea?
>>>>
>>>> On 7 September 2015 at 17:30, moon soo Lee <m...@apache.org> wrote:
>>>>
>>>>> Hi,
>>>>>
>>>>> I think you will need to convert RDD to data frame using .toDF(), like
>>>>> accessLogs.toDF.registerTempTable("RAS")
>>>>>
>>>>> Thanks,
>>>>> moon
>>>>>
>>>>> On Mon, Sep 7, 2015 at 3:34 AM Sajeevan Achuthan <
>>>>> achuthan.sajee...@gmail.com> wrote:
>>>>>
>>>>>> Zeppelin, an excellent tool. I am trying to implement a streaming
>>>>>> application. I get an error while deploying my application. See my code
>>>>>> below
>>>>>>
>>>>>>
>>>>>> import org.apache.spark.SparkContext
>>>>>> import org.apache.spark.SparkContext._
>>>>>> import org.apache.spark.SparkConf
>>>>>> import org.apache.spark.streaming.StreamingContext
>>>>>> import org.apache.spark.streaming.Seconds
>>>>>> import org.apache.spark.sql.SQLContext
>>>>>>   val sparkConf = new
>>>>>> SparkConf().setAppName("PEPA").setMaster("local[*]").set("spark.driver.allowMultipleContexts",
>>>>>> "true")
>>>>>>
>>>>>>         import org.apache.spark.streaming.kafka._
>>>>>>         val ssc = new StreamingContext(sparkConf, Seconds(2))
>>>>>>
>>>>>>         ssc.checkpoint("checkpoint")
>>>>>>         val topicMap = Map("incoming"->1)
>>>>>>
>>>>>>         val record = KafkaUtils.createStream(ssc, "localhost", "1",
>>>>>> topicMap).map(_._2)
>>>>>>          record.print()
>>>>>>         case class
>>>>>> CELL_KPIS(ECELL_Name:String,CGI:String,Number_of_Times_Interf:Double,TAOF:Double,PHL:Double,NPCCHL:Double,LRSRP:Double,NC:Double)
>>>>>>         val data =
>>>>>> record.map(s=>s.split(",")).filter(s=>s(0)!="\"ECELL_Name\"").map(
>>>>>>             s=>CELL_KPIS(s(0), s(1), s(2).toDouble, s(3).toDouble,
>>>>>> s(5).toDouble,s(6).toDouble, s(7).toDouble, s(8).toDouble)
>>>>>>         )
>>>>>>         data.foreachRDD {accessLogs =>
>>>>>>         import sqlContext.implicits._
>>>>>>        accessLogs.registerTempTable("RAS")
>>>>>>
>>>>>>         }
>>>>>>         ssc.start()
>>>>>>    ssc.awaitTermination()
>>>>>>
>>>>>> And I get error
>>>>>> import org.apache.spark.SparkContext import
>>>>>> org.apache.spark.SparkContext._ import org.apache.spark.SparkConf import
>>>>>> org.apache.spark.streaming.StreamingContext import
>>>>>> org.apache.spark.streaming.Seconds import org.apache.spark.sql.SQLContext
>>>>>> sparkConf: org.apache.spark.SparkConf = 
>>>>>> org.apache.spark.SparkConf@2e5779a
>>>>>> import org.apache.spark.streaming.kafka._ ssc:
>>>>>> org.apache.spark.streaming.StreamingContext =
>>>>>> org.apache.spark.streaming.StreamingContext@48621ee1 topicMap:
>>>>>> scala.collection.immutable.Map[String,Int] = Map(incoming -> 1) record:
>>>>>> org.apache.spark.streaming.dstream.DStream[String] =
>>>>>> org.apache.spark.streaming.dstream.MappedDStream@6290e75e defined
>>>>>> class CELL_KPIS data: 
>>>>>> org.apache.spark.streaming.dstream.DStream[CELL_KPIS]
>>>>>> = org.apache.spark.streaming.dstream.MappedDStream@4bda38c3
>>>>>>
>>>>>> <console>:55: error: value registerTempTable is not a member of
>>>>>> org.apache.spark.rdd.RDD[CELL_KPIS] accessLogs.registerTempTable("RAS")
>>>>>>
>>>>>> *My configuration for Zeppelin*
>>>>>>
>>>>>>
>>>>>> export MASTER=spark://localhost:7077
>>>>>> export JAVA_HOME=/usr/lib/jvm/jdk1.8.0_05
>>>>>> export ZEPPELIN_PORT=9090
>>>>>> export ZEPPELIN_SPARK_CONCURRENTSQL=false
>>>>>> export ZEPPELIN_SPARK_USEHIVECONTEXT=false
>>>>>> #'export MASTER=local[*]
>>>>>> export SPARK_HOME=/home/anauser/spark-1.3/spark-1.3.0-bin-cdh4
>>>>>>
>>>>>> *Interpreter configuration for spark *
>>>>>>
>>>>>> "2AW247KM7": { "id": "2AW247KM7", "name": "spark", "group": "spark",
>>>>>> "properties": { "spark.cores.max": "", "spark.yarn.jar": "", "master":
>>>>>> "local[*]", "zeppelin.spark.maxResult": "1000", "zeppelin.dep.localrepo":
>>>>>> "local-repo", "spark.app.name": "APP3", "spark.executor.memory":
>>>>>> "5G", "zeppelin.spark.useHiveContext": "false",
>>>>>> "spark.driver.allowMultipleContexts": "true", "args": "", "spark.home":
>>>>>> "/home/anauser/spark-1.3/spark-1.3.0-bin-cdh4",
>>>>>> "zeppelin.spark.concurrentSQL": "true", "zeppelin.pyspark.python": 
>>>>>> "python"
>>>>>> }, "interpreterGroup": [ { "class":
>>>>>> "org.apache.zeppelin.spark.SparkInterpreter", "name": "spark" }, { 
>>>>>> "class":
>>>>>> "org.apache.zeppelin.spark.PySparkInterpreter", "name": "pyspark" }, {
>>>>>> "class": "org.apache.zeppelin.spark.SparkSqlInterpreter", "name": "sql" 
>>>>>> },
>>>>>> { "class": "org.apache.zeppelin.spark.DepInterpreter", "name": "dep" } ],
>>>>>> "option": { "remote": true } }
>>>>>> Is there any problem in my code or setup ?
>>>>>> Any help very much appreciated.
>>>>>>
>>>>>
>>>>
>>>
>>
>

Reply via email to