Is this a bug? I can open an issue if it is. On Wed, Sep 16, 2015, 4:51 PM Paulo Cheadi Haddad Filho <paulo...@gmail.com> wrote:
> Actually, I've done this already, but I'd forgotten the outcome. > > I get "pyspark is not responding" message. > > > On Wed, Sep 16, 2015 at 4:01 PM Felix Cheung <felixcheun...@hotmail.com> > wrote: > >> Could you try setting zeppelin.pyspark.python in the interpreter setting >> to the matching Python 3? "python3" in your example below. >> >> >> _____________________________ >> >> From: Paulo Cheadi Haddad Filho <paulo...@gmail.com> >> Sent: Wednesday, September 16, 2015 9:21 AM >> Subject: Fwd: Zeppelin error when trying to run pyspark using python3 >> To: <users@zeppelin.incubator.apache.org> >> >> >> Hello, >> >> Yesterday I installed a Spark server with Zeppelin and, while testing in >> a new notebook, I realized that pyspark is using Python 2.7.9. I have >> Python 3.4.3 installed and some other things I can tell if you later. >> >> Looking for how to use python3, I found this post [1]. I tried setting >> those env variables in .bashrc and zeppelin-env.sh as >> >> export PYSPARK_PYTHON="python3" >>> export PYSPARK_DRIVER_PYTHON="ipython3" >> >> >> When I run ./bin/pyspark I get >> >> paulo_filho@spark:~$ $SPARK_HOME/bin/pyspark >>> Python 3.4.3 (default, Mar 26 2015, 22:03:40) >>> Type "copyright", "credits" or "license" for more information. >>> IPython 4.0.0 -- An enhanced Interactive Python. >>> ... >>> Welcome to >>> ____ __ >>> / __/__ ___ _____/ /__ >>> _\ \/ _ \/ _ `/ __/ '_/ >>> /__ / .__/\_,_/_/ /_/\_\ version 1.5.0 >>> /_/ >>> Using Python version 3.4.3 (default, Mar 26 2015 22:03:40) >> >> >> but Zeppelin didn't work. Instead, I got the error below: >> >> %pyspark >> import sys >> print(sys.version_info) >> >>> sys.version_info(major=2, minor=7, micro=9, releaselevel='final', >>> serial=0) >> >> >> >> %pyspark >> bankText = sc.textFile("/home/paulo_filho/data/bank.csv") >> print(bankText.take(2)) >> >>> Py4JJavaError: An error occurred while calling >>> z:org.apache.spark.api.python.PythonRDD.runJob. >>> : org.apache.spark.SparkException: Job aborted due to stage failure: >>> Task 0 in stage 0.0 failed 1 times, most recent failure: Lost task 0.0 in >>> stage 0.0 (TID 0, localhost): org.apache.spark.api.python.PythonException: >>> Traceback (most recent call last): >>> File >>> "/usr/local/spark-1.5.0-bin-hadoop2.6/python/lib/pyspark.zip/pyspark/worker.py", >>> line 64, in main >>> ("%d.%d" % sys.version_info[:2], version)) >>> Exception: Python in worker has different version 3.4 than that in >>> driver 2.7, PySpark cannot run with different minor versions >>> at >>> org.apache.spark.api.python.PythonRDD$$anon$1.read(PythonRDD.scala:138) >>> at >>> org.apache.spark.api.python.PythonRDD$$anon$1.<init>(PythonRDD.scala:179) >>> at org.apache.spark.api.python.PythonRDD.compute(PythonRDD.scala:97) >>> at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:297) >>> at org.apache.spark.rdd.RDD.iterator(RDD.scala:264) >>> at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:66) >>> at org.apache.spark.scheduler.Task.run(Task.scala:88) >>> at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:214) >>> at >>> java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142) >>> >>> at >>> java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617) >>> >>> at java.lang.Thread.run(Thread.java:745) >>> Driver stacktrace: >>> at >>> org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1280) >>> >>> at >>> org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1268) >>> >>> at >>> org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1267) >>> >>> at >>> scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59) >>> >>> at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47) >>> at >>> org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1267) >>> at >>> org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:697) >>> >>> at >>> org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:697) >>> >>> at scala.Option.foreach(Option.scala:236) >>> at >>> org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:697) >>> >>> at >>> org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:1493) >>> >>> at >>> org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1455) >>> >>> at >>> org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1444) >>> >>> at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:48) >>> at >>> org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:567) >>> at org.apache.spark.SparkContext.runJob(SparkContext.scala:1813) >>> at org.apache.spark.SparkContext.runJob(SparkContext.scala:1826) >>> at org.apache.spark.SparkContext.runJob(SparkContext.scala:1839) >>> at org.apache.spark.api.python.PythonRDD$.runJob(PythonRDD.scala:361) >>> at org.apache.spark.api.python.PythonRDD.runJob(PythonRDD.scala) >>> at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) >>> at >>> sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62) >>> >>> at >>> sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) >>> >>> at java.lang.reflect.Method.invoke(Method.java:497) >>> at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:231) >>> at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:379) >>> at py4j.Gateway.invoke(Gateway.java:259) >>> at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:133) >>> at py4j.commands.CallCommand.execute(CallCommand.java:79) >>> at py4j.GatewayConnection.run(GatewayConnection.java:207) >>> at java.lang.Thread.run(Thread.java:745) >>> Caused by: org.apache.spark.api.python.PythonException: Traceback (most >>> recent call last): >>> File >>> "/usr/local/spark-1.5.0-bin-hadoop2.6/python/lib/pyspark.zip/pyspark/worker.py", >>> line 64, in main >>> ("%d.%d" % sys.version_info[:2], version)) >>> Exception: Python in worker has different version 3.4 than that in >>> driver 2.7, PySpark cannot run with different minor versions >>> at >>> org.apache.spark.api.python.PythonRDD$$anon$1.read(PythonRDD.scala:138) >>> at >>> org.apache.spark.api.python.PythonRDD$$anon$1.<init>(PythonRDD.scala:179) >>> at org.apache.spark.api.python.PythonRDD.compute(PythonRDD.scala:97) >>> at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:297) >>> at org.apache.spark.rdd.RDD.iterator(RDD.scala:264) >>> at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:66) >>> at org.apache.spark.scheduler.Task.run(Task.scala:88) >>> at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:214) >>> at >>> java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142) >>> >>> at >>> java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617) >>> >>> ... 1 more >>> (<class 'py4j.protocol.Py4JJavaError'>, Py4JJavaError(u'An error >>> occurred while calling z:org.apache.spark.api.python.PythonRDD.runJob.\n', >>> JavaObject id=o53), <traceback object at 0x7f814b4596c8>) >> >> >> I noticed that in Zeppelin's "Interpreter" section there's a config >> >> zeppelin.pyspark.python python >>> >> >> I've already tried to change that, but I got the same error always. >> >> >> So, I'm here asking for your help. =) >> >> Thanks! >> >> >> [1] >> http://stackoverflow.com/questions/30518362/how-do-i-set-the-drivers-python-version-in-spark >> >> >> >>