Hi Jonathon,

After separating the I and Q channels, I think that the values with
detached RX input look reasonable (please see *I_Q_data_custom_build.txt*).
What do you think?
I am reading my custom register with a modified version of
*rx_samples_to_file* (attached as well, line 92 - 100).

Now, when I try to send some reference sine waves via the *tx_waveforms*
example running on another PC attached to another USRP B205mini, I get
unexplainable data.
The default data type in the *tx_waveforms* is fc32, do I need to recompile
it with sc16 for this case?

Kind regards,
V.

On Wed, Feb 26, 2020 at 1:36 AM Varban Metodiev <[email protected]>
wrote:

> Hi Jonathon,
>
> Thank you very much for your reply.
>
> What do you want to accomplish?
> --> Right now, I just want to monitor the 'sample_rx' values. Eventually,
> I will use this to calibrate the reference input of my custom Verilog
> decoder (attached) that aims to detect spikes and measure their length
> (like those from the attachment).
>
> It is a short complex int where the upper 16-bits are I and the lower
> 16-bits are Q.
> --> Well... that could be the explanation. I will try to monitor them
> separately and get back to you.
>
> Kind regards,
> Varban
>
> On Tue, Feb 25, 2020 at 8:50 PM Jonathon Pendlum <
> [email protected]> wrote:
>
>> Hi Varban,
>>
>> I am now getting random 32-bit values when polling it from the UHD
>>> (instead of a constant that indicates a "zero" reception)
>>
>>
>> Even with the antenna disconnected you can expect some LSBs to toggle due
>> to inherent receiver noise.
>>
>> 1) How should I interpret the 32-variable?
>>>
>>
>> It is a short complex int where the upper 16-bits are I and the lower
>> 16-bits are Q.
>>
>>
>>> 2) Is the strobe_rx the correct signal that indicates new sample arrival?
>>>
>>
>> Yes
>>
>>
>>> 2) Do I need new_rx_control?
>>
>>
>> No
>>
>> Have I done this correctly in general, or there is something completely
>>> wrong in my approach?
>>
>>
>> What do you want to accomplish?
>>
>> Jonathon
>>
>> On Mon, Feb 17, 2020 at 5:03 AM Varban Metodiev via USRP-users <
>> [email protected]> wrote:
>>
>>> Dear all,
>>>
>>> After exposing the *sample_rx* from radio_legacy.v
>>> <https://github.com/EttusResearch/uhd/blob/master/fpga/usrp3/lib/radio_200/radio_legacy.v>
>>>  to
>>> a user defined register and sampling it at rising edge of the
>>> *strobe_rx*, I am now getting random 32-bit values when polling it from
>>> the UHD (instead of a constant that indicates a "zero" reception). I am
>>> doing this with disconnected antenna using a modified rx_samples C++
>>> example application.
>>>
>>> I have the following questions:
>>> 1) How should I interpret the 32-variable?
>>> 2) Is the strobe_rx the correct signal that indicates new sample arrival?
>>> 2) Do I need new_rx_control?
>>>
>>> Have I done this correctly in general, or there is something completely
>>> wrong in my approach?
>>>
>>> Thanks,
>>> Varban
>>> _______________________________________________
>>> USRP-users mailing list
>>> [email protected]
>>> http://lists.ettus.com/mailman/listinfo/usrp-users_lists.ettus.com
>>>
>>
vmetodiev@ubuntu:~/Development/SDR/uhd/host/build/examples$ sudo 
./rx_samples_to_file --freq 2e9 --rate 1e6 --bw 1e6 --gain 60 

Creating the usrp device with: ...
[INFO] [UHD] linux; GNU C++ version 9.2.1 20191008; Boost_106700; 
UHD_4.0.0.0-436-g45719260
[INFO] [B200] Detected Device: B205mini
[INFO] [B200] Operating over USB 3.
[INFO] [B200] Initialize CODEC control...
[INFO] [B200] Initialize Radio control...
[INFO] [B200] Performing register loopback test... 
[INFO] [B200] Register loopback test passed
[INFO] [B200] Setting master clock rate selection to 'automatic'.
[INFO] [B200] Asking for clock rate 16.000000 MHz... 
[INFO] [B200] Actually got clock rate 16.000000 MHz.
Using Device: Single USRP:
  Device: B-Series Device
  Mboard 0: B205mini
  RX Channel: 0
    RX DSP: 0
    RX Dboard: A
    RX Subdev: FE-RX1
  TX Channel: 0
    TX DSP: 0
    TX Dboard: A
    TX Subdev: FE-TX1

Setting RX Rate: 1.000000 Msps...
[INFO] [B200] Asking for clock rate 32.000000 MHz... 
[INFO] [B200] Actually got clock rate 32.000000 MHz.
Actual RX Rate: 1.000000 Msps...

Setting RX Freq: 2000.000000 MHz...
Setting RX LO Offset: 0.000000 MHz...
Actual RX Freq: 2000.000000 MHz...

Setting RX Gain: 60.000000 dB...
Actual RX Gain: 60.000000 dB...

Setting RX Bandwidth: 1.000000 MHz...
Actual RX Bandwidth: 1.000000 MHz...

Waiting for "lo_locked": ++++++++++ locked.

Press Ctrl + C to stop streaming...
I: 26
Q: 6
-------------
I: -46
Q: -30
-------------
I: -43
Q: -3
-------------
I: -39
Q: -24
-------------
I: 21
Q: -15
-------------
I: -22
Q: 70
-------------
I: -13
Q: 29
-------------
I: -4
Q: 0
-------------
I: 14
Q: 13
-------------
I: -51
Q: -36
-------------
I: -16
Q: 37
-------------
I: -10
Q: -25
-------------
I: 20
Q: 23
-------------
I: -66
Q: -49
-------------
I: -3
Q: -18
-------------
I: 14
Q: 4
-------------
I: -7
Q: 22
-------------
I: -31
Q: 32
-------------
I: 21
Q: 28
-------------
I: -26
Q: 1
-------------
I: -23
Q: 37
-------------
I: 8
Q: 12
-------------
I: -14
Q: 13
-------------
I: -1
Q: -25
-------------
I: -76
Q: 50
-------------
I: 50
Q: -39
-------------
I: -22
Q: 5
-------------
I: 7
Q: -46
-------------
I: -51
Q: -3
-------------
I: 3
Q: -35
-------------
I: 10
Q: -63
-------------
I: -8
Q: -51
-------------
I: -36
Q: -43
-------------
I: 26
Q: 54
-------------
I: -19
Q: -36
-------------
I: 38
Q: 24
-------------
I: -28
Q: 22
-------------
I: -23
Q: -7
-------------
I: 16
Q: 17
-------------
I: 21
Q: 2
-------------
I: -13
Q: -30
-------------
I: 49
Q: -14
-------------
I: -55
Q: -21
-------------
I: -22
Q: 62
-------------
I: 24
Q: -37
-------------
I: 12
Q: 12
-------------
I: 1
Q: 19
-------------
I: -46
Q: 43
-------------
I: 48
Q: -68
-------------
I: 16
Q: -20
-------------
I: -35
Q: -34
-------------
I: -30
Q: -25
-------------
I: -45
Q: 0
-------------
I: 17
Q: 6
-------------
I: -68
Q: -40
-------------
I: -28
Q: -29
-------------
I: 41
Q: 32
-------------
I: -4
Q: 16
-------------
I: 3
Q: 1
-------------
I: 18
Q: -33
-------------
I: 39
Q: 38
-------------
I: -19
Q: -11
-------------
I: 19
Q: -22
-------------
I: -22
Q: 38
-------------
I: -27
Q: 24
-------------
I: 27
Q: -2
-------------
I: -23
Q: -42
-------------
I: 8
Q: -56
-------------
I: -6
Q: -21
-------------
I: -8
Q: 13
-------------
I: 9
Q: 34
-------------
I: 29
Q: 37
-------------
I: -37
Q: -30
-------------
I: -45
Q: -21
-------------
I: 6
Q: -39
-------------
I: 33
Q: -40
-------------
I: -47
Q: 35
-------------
I: 45
Q: -14
-------------
I: 3
Q: 32
-------------
I: 19
Q: -13
-------------
I: -2
Q: 22
-------------
I: 4
Q: 70
-------------
I: -35
Q: -44
-------------
I: -10
Q: -44
-------------
I: 13
Q: -41
-------------
I: 28
Q: 17
-------------
I: -26
Q: -3
-------------
I: 32
Q: 22
-------------
I: -24
Q: -36
-------------
I: -12
Q: 20
-------------
I: 4
Q: 21
-------------
I: -24
Q: 5
-------------
I: -18
Q: -48
-------------
I: -31
Q: 51
-------------
I: -11
Q: 31
-------------
I: 26
Q: 0
-------------
I: 23
Q: 8
-------------
I: -28
Q: -10
-------------
I: 41
Q: -6
-------------
I: -26
Q: 1
-------------
I: 25
Q: -42
-------------
I: -8
Q: -8
-------------
I: 56
Q: 7
-------------
I: -67
Q: 32
-------------
I: -10
Q: -46
-------------
I: 31
Q: -60
-------------
I: -29
Q: -82
-------------
I: -74
Q: -17
-------------
I: 24
Q: 42
-------------
I: -16
Q: -44
-------------
I: 62
Q: 34
-------------
I: -11
Q: -17
-------------
I: -46
Q: -11
-------------
I: 23
Q: -5
-------------
I: 67
Q: 73
-------------
I: 31
Q: 26
-------------
I: -17
Q: 56
-------------
I: -35
Q: -53
-------------
I: 36
Q: 6
-------------
I: -84
Q: -53
-------------
I: 32
Q: -56
-------------
I: 34
Q: -14
-------------
I: -79
Q: 6
-------------
I: -76
Q: 2
-------------
I: -30
Q: 9
-------------
I: -5
Q: -17
-------------
I: -8
Q: 65
-------------
I: -21
Q: -25
-------------
I: 23
Q: 36
-------------
I: -24
Q: 9
-------------
I: -22
Q: 41
-------------
I: -62
Q: 60
-------------
I: 49
Q: -6
-------------
I: -11
Q: -38
-------------
I: 70
Q: 15
-------------
I: 27
Q: -9
-------------
I: -52
Q: 11
-------------
I: 53
Q: -20
-------------
I: 67
Q: -35
-------------
I: -18
Q: 36
-------------
I: 49
Q: 5
-------------
I: -21
Q: 48
-------------
I: 42
Q: 9
-------------
I: -47
Q: 8
-------------
I: 3
Q: -52
-------------
I: 42
Q: 9
-------------
I: -21
Q: -28
-------------
I: -52
Q: -81
-------------
I: -57
Q: -50
-------------
I: 59
Q: -14
-------------
I: 20
Q: 14
-------------
I: -66
Q: -1
-------------
I: -69
Q: 4
-------------
I: 21
Q: -51
-------------
I: 16
Q: -31
-------------
I: -66
Q: 23
-------------
I: -5
Q: -75
-------------
I: 67
Q: 2
-------------
I: 28
Q: -14
-------------
I: 51
Q: 38
-------------
I: 47
Q: -89
-------------
I: 49
Q: -52
-------------
I: 55
Q: -48
-------------
I: 66
Q: -9
-------------
I: -44
Q: -39
-------------
I: -55
Q: -5
-------------
I: 75
Q: -12
-------------
I: 43
Q: 68
-------------
I: -35
Q: -36
-------------
I: 114
Q: -33
-------------
I: -15
Q: -24
-------------
I: 29
Q: -25
-------------
I: 8
Q: -22
-------------
I: 28
Q: 2
-------------
I: 0
Q: 13
-------------
I: 18
Q: -24
-------------
I: 28
Q: -2
-------------
I: -83
Q: 14
-------------
I: -29
Q: -6
-------------
I: -24
Q: -51
-------------
I: -20
Q: -26
-------------
I: 32
Q: -42
-------------
I: 20
Q: -52
-------------
I: -44
Q: -39
-------------
I: -43
Q: -52
-------------
I: 10
Q: 31
-------------
I: 19
Q: 16
-------------
I: -32
Q: -43
-------------
I: 15
Q: 11
-------------
I: 58
Q: -35
-------------
I: 0
Q: 58
-------------
I: -6
Q: 39
-------------
I: 2
Q: 32
-------------
I: 1
Q: 11
-------------
I: 45
Q: -11
-------------
I: -35
Q: -44
-------------
I: -3
Q: 39
-------------
I: 24
Q: 44
-------------
I: 3
Q: 43
-------------
I: -27
Q: -45
-------------
I: 6
Q: 37
-------------
I: 14
Q: -1
-------------
I: 32
Q: -22
-------------
//
// Copyright 2010-2011,2014 Ettus Research LLC
// Copyright 2018 Ettus Research, a National Instruments Company
//
// SPDX-License-Identifier: GPL-3.0-or-later
//

#include <uhd/exception.hpp>
#include <uhd/types/tune_request.hpp>
#include <uhd/usrp/multi_usrp.hpp>
#include <uhd/utils/safe_main.hpp>
#include <uhd/utils/thread.hpp>
#include <boost/format.hpp>
#include <boost/lexical_cast.hpp>
#include <boost/program_options.hpp>
#include <chrono>
#include <complex>
#include <csignal>
#include <fstream>
#include <iostream>
#include <thread>

namespace po = boost::program_options;

static bool stop_signal_called = false;
void sig_int_handler(int)
{
    stop_signal_called = true;
}

template <typename samp_type>
void recv_to_file(uhd::usrp::multi_usrp::sptr usrp,
    const std::string& cpu_format,
    const std::string& wire_format,
    const size_t& channel,
    const std::string& file,
    size_t samps_per_buff,
    unsigned long long num_requested_samples,
    double time_requested       = 0.0,
    bool bw_summary             = false,
    bool stats                  = false,
    bool null                   = false,
    bool enable_size_map        = false,
    bool continue_on_bad_packet = false)
{
    unsigned long long num_total_samps = 0;
    // create a receive streamer
    uhd::stream_args_t stream_args(cpu_format, wire_format);
    std::vector<size_t> channel_nums;
    channel_nums.push_back(channel);
    stream_args.channels             = channel_nums;
    uhd::rx_streamer::sptr rx_stream = usrp->get_rx_stream(stream_args);

    uhd::rx_metadata_t md;
    std::vector<samp_type> buff(samps_per_buff);
    std::ofstream outfile;
    if (not null)
        outfile.open(file.c_str(), std::ofstream::binary);
    bool overflow_message = true;

    // setup streaming
    uhd::stream_cmd_t stream_cmd((num_requested_samples == 0)
                                     ? uhd::stream_cmd_t::STREAM_MODE_START_CONTINUOUS
                                     : uhd::stream_cmd_t::STREAM_MODE_NUM_SAMPS_AND_DONE);
    stream_cmd.num_samps  = size_t(num_requested_samples);
    stream_cmd.stream_now = true;
    stream_cmd.time_spec  = uhd::time_spec_t();
    rx_stream->issue_stream_cmd(stream_cmd);

    typedef std::map<size_t, size_t> SizeMap;
    SizeMap mapSizes;
    const auto start_time = std::chrono::steady_clock::now();
    const auto stop_time =
        start_time + std::chrono::milliseconds(int64_t(1000 * time_requested));
    // Track time and samps between updating the BW summary
    auto last_update                     = start_time;
    unsigned long long last_update_samps = 0;

    // Run this loop until either time expired (if a duration was given), until
    // the requested number of samples were collected (if such a number was
    // given), or until Ctrl-C was pressed.
    while (not stop_signal_called
           and (num_requested_samples != num_total_samps or num_requested_samples == 0)
           and (time_requested == 0.0 or std::chrono::steady_clock::now() <= stop_time)) {
        const auto now = std::chrono::steady_clock::now();

        // Read USER REGISTERS here
        auto regs = usrp->get_user_settings_iface();
        //regs->poke32(0, 0xCAFE);
        //regs->poke32(4, 0xBEEF);
        
        short i_chan = 0;
        short q_chan = 0;
        auto iq_chans = (regs->peek64(0)) & 0x00000000FFFFFFFF; // Because we use the lower 32 bits in the custom FPGA build for storing the current sample_rx
        i_chan = (iq_chans >> 16) & 0x0000FFFF;
        q_chan = 0x0000FFFF & iq_chans;
        
        std::cout << boost::format("I: %hi\n") % i_chan;
        std::cout << boost::format("Q: %hi\n") % q_chan;
        std::cout << boost::format("-------------\n");

        size_t num_rx_samps =
            rx_stream->recv(&buff.front(), buff.size(), md, 3.0, enable_size_map);

        if (md.error_code == uhd::rx_metadata_t::ERROR_CODE_TIMEOUT) {
            std::cout << boost::format("Timeout while streaming") << std::endl;
            break;
        }
        if (md.error_code == uhd::rx_metadata_t::ERROR_CODE_OVERFLOW) {
            if (overflow_message) {
                overflow_message = false;
                std::cerr
                    << boost::format(
                           "Got an overflow indication. Please consider the following:\n"
                           "  Your write medium must sustain a rate of %fMB/s.\n"
                           "  Dropped samples will not be written to the file.\n"
                           "  Please modify this example for your purposes.\n"
                           "  This message will not appear again.\n")
                           % (usrp->get_rx_rate(channel) * sizeof(samp_type) / 1e6);
            }
            continue;
        }
        if (md.error_code != uhd::rx_metadata_t::ERROR_CODE_NONE) {
            std::string error = str(boost::format("Receiver error: %s") % md.strerror());
            if (continue_on_bad_packet) {
                std::cerr << error << std::endl;
                continue;
            } else
                throw std::runtime_error(error);
        }

        if (enable_size_map) {
            SizeMap::iterator it = mapSizes.find(num_rx_samps);
            if (it == mapSizes.end())
                mapSizes[num_rx_samps] = 0;
            mapSizes[num_rx_samps] += 1;
        }

        num_total_samps += num_rx_samps;

        if (outfile.is_open()) {
            outfile.write((const char*)&buff.front(), num_rx_samps * sizeof(samp_type));
        }

        if (bw_summary) {
            last_update_samps += num_rx_samps;
            const auto time_since_last_update = now - last_update;
            if (time_since_last_update > std::chrono::seconds(1)) {
                const double time_since_last_update_s =
                    std::chrono::duration<double>(time_since_last_update).count();
                const double rate = double(last_update_samps) / time_since_last_update_s;
                std::cout << "\t" << (rate / 1e6) << " Msps" << std::endl;
                last_update_samps = 0;
                last_update       = now;
            }
        }
    }
    const auto actual_stop_time = std::chrono::steady_clock::now();

    stream_cmd.stream_mode = uhd::stream_cmd_t::STREAM_MODE_STOP_CONTINUOUS;
    rx_stream->issue_stream_cmd(stream_cmd);

    if (outfile.is_open()) {
        outfile.close();
    }

    if (stats) {
        std::cout << std::endl;
        const double actual_duration_seconds =
            std::chrono::duration<float>(actual_stop_time - start_time).count();

        std::cout << boost::format("Received %d samples in %f seconds") % num_total_samps
                         % actual_duration_seconds
                  << std::endl;
        const double rate = (double)num_total_samps / actual_duration_seconds;
        std::cout << (rate / 1e6) << " Msps" << std::endl;

        if (enable_size_map) {
            std::cout << std::endl;
            std::cout << "Packet size map (bytes: count)" << std::endl;
            for (SizeMap::iterator it = mapSizes.begin(); it != mapSizes.end(); it++)
                std::cout << it->first << ":\t" << it->second << std::endl;
        }
    }
}

typedef std::function<uhd::sensor_value_t(const std::string&)> get_sensor_fn_t;

bool check_locked_sensor(std::vector<std::string> sensor_names,
    const char* sensor_name,
    get_sensor_fn_t get_sensor_fn,
    double setup_time)
{
    if (std::find(sensor_names.begin(), sensor_names.end(), sensor_name)
        == sensor_names.end())
        return false;

    auto setup_timeout = std::chrono::steady_clock::now()
                         + std::chrono::milliseconds(int64_t(setup_time * 1000));
    bool lock_detected = false;

    std::cout << boost::format("Waiting for \"%s\": ") % sensor_name;
    std::cout.flush();

    while (true) {
    
        if (lock_detected and (std::chrono::steady_clock::now() > setup_timeout)) {
            std::cout << " locked." << std::endl;
            break;
        }
        if (get_sensor_fn(sensor_name).to_bool()) {
            std::cout << "+";
            std::cout.flush();
            lock_detected = true;
        } else {
            if (std::chrono::steady_clock::now() > setup_timeout) {
                std::cout << std::endl;
                throw std::runtime_error(
                    str(boost::format(
                            "timed out waiting for consecutive locks on sensor \"%s\"")
                        % sensor_name));
            }
            std::cout << "_";
            std::cout.flush();
        }
        std::this_thread::sleep_for(std::chrono::milliseconds(100));
    
    }
    std::cout << std::endl;
    return true;
}

int UHD_SAFE_MAIN(int argc, char* argv[])
{
    // variables to be set by po
    std::string args, file, type, ant, subdev, ref, wirefmt;
    size_t channel, total_num_samps, spb;
    double rate, freq, gain, bw, total_time, setup_time, lo_offset;

    // setup the program options
    po::options_description desc("Allowed options");
    // clang-format off
    desc.add_options()
        ("help", "help message")
        ("args", po::value<std::string>(&args)->default_value(""), "multi uhd device address args")
        ("file", po::value<std::string>(&file)->default_value("usrp_samples.dat"), "name of the file to write binary samples to")
        ("type", po::value<std::string>(&type)->default_value("short"), "sample type: double, float, or short")
        ("nsamps", po::value<size_t>(&total_num_samps)->default_value(0), "total number of samples to receive")
        ("duration", po::value<double>(&total_time)->default_value(0), "total number of seconds to receive")
        ("spb", po::value<size_t>(&spb)->default_value(10000), "samples per buffer")
        ("rate", po::value<double>(&rate)->default_value(1e6), "rate of incoming samples")
        ("freq", po::value<double>(&freq)->default_value(0.0), "RF center frequency in Hz")
        ("lo-offset", po::value<double>(&lo_offset)->default_value(0.0),
            "Offset for frontend LO in Hz (optional)")
        ("gain", po::value<double>(&gain), "gain for the RF chain")
        ("ant", po::value<std::string>(&ant), "antenna selection")
        ("subdev", po::value<std::string>(&subdev), "subdevice specification")
        ("channel", po::value<size_t>(&channel)->default_value(0), "which channel to use")
        ("bw", po::value<double>(&bw), "analog frontend filter bandwidth in Hz")
        ("ref", po::value<std::string>(&ref)->default_value("internal"), "reference source (internal, external, mimo)")
        ("wirefmt", po::value<std::string>(&wirefmt)->default_value("sc16"), "wire format (sc8, sc16 or s16)")
        ("setup", po::value<double>(&setup_time)->default_value(1.0), "seconds of setup time")
        ("progress", "periodically display short-term bandwidth")
        ("stats", "show average bandwidth on exit")
        ("sizemap", "track packet size and display breakdown on exit")
        ("null", "run without writing to file")
        ("continue", "don't abort on a bad packet")
        ("skip-lo", "skip checking LO lock status")
        ("int-n", "tune USRP with integer-N tuning")
    ;
    // clang-format on
    po::variables_map vm;
    po::store(po::parse_command_line(argc, argv, desc), vm);
    po::notify(vm);

    // print the help message
    if (vm.count("help")) {
        std::cout << boost::format("UHD RX samples to file %s") % desc << std::endl;
        std::cout << std::endl
                  << "This application streams data from a single channel of a USRP "
                     "device to a file.\n"
                  << std::endl;
        return ~0;
    }

    bool bw_summary             = vm.count("progress") > 0;
    bool stats                  = vm.count("stats") > 0;
    bool null                   = vm.count("null") > 0;
    bool enable_size_map        = vm.count("sizemap") > 0;
    bool continue_on_bad_packet = vm.count("continue") > 0;

    if (enable_size_map)
        std::cout << "Packet size tracking enabled - will only recv one packet at a time!"
                  << std::endl;

    // create a usrp device
    std::cout << std::endl;
    std::cout << boost::format("Creating the usrp device with: %s...") % args
              << std::endl;

    std::string myvar = "type=b200,enable_user_regs";
    uhd::usrp::multi_usrp::sptr usrp = uhd::usrp::multi_usrp::make(myvar);

    // Lock mboard clocks
    if (vm.count("ref")) {
        usrp->set_clock_source(ref);
    }

    // always select the subdevice first, the channel mapping affects the other settings
    if (vm.count("subdev"))
        usrp->set_rx_subdev_spec(subdev);

    std::cout << boost::format("Using Device: %s") % usrp->get_pp_string() << std::endl;

    // set the sample rate
    if (rate <= 0.0) {
        std::cerr << "Please specify a valid sample rate" << std::endl;
        return ~0;
    }
    std::cout << boost::format("Setting RX Rate: %f Msps...") % (rate / 1e6) << std::endl;
    usrp->set_rx_rate(rate, channel);
    std::cout << boost::format("Actual RX Rate: %f Msps...")
                     % (usrp->get_rx_rate(channel) / 1e6)
              << std::endl
              << std::endl;

    // set the center frequency
    if (vm.count("freq")) { // with default of 0.0 this will always be true
        std::cout << boost::format("Setting RX Freq: %f MHz...") % (freq / 1e6)
                  << std::endl;
        std::cout << boost::format("Setting RX LO Offset: %f MHz...") % (lo_offset / 1e6)
                  << std::endl;
        uhd::tune_request_t tune_request(freq, lo_offset);
        if (vm.count("int-n"))
            tune_request.args = uhd::device_addr_t("mode_n=integer");
        usrp->set_rx_freq(tune_request, channel);
        std::cout << boost::format("Actual RX Freq: %f MHz...")
                         % (usrp->get_rx_freq(channel) / 1e6)
                  << std::endl
                  << std::endl;
    }

    // set the rf gain
    if (vm.count("gain")) {
        std::cout << boost::format("Setting RX Gain: %f dB...") % gain << std::endl;
        usrp->set_rx_gain(gain, channel);
        std::cout << boost::format("Actual RX Gain: %f dB...")
                         % usrp->get_rx_gain(channel)
                  << std::endl
                  << std::endl;
    }

    // set the IF filter bandwidth
    if (vm.count("bw")) {
        std::cout << boost::format("Setting RX Bandwidth: %f MHz...") % (bw / 1e6)
                  << std::endl;
        usrp->set_rx_bandwidth(bw, channel);
        std::cout << boost::format("Actual RX Bandwidth: %f MHz...")
                         % (usrp->get_rx_bandwidth(channel) / 1e6)
                  << std::endl
                  << std::endl;
    }

    // set the antenna
    if (vm.count("ant"))
        usrp->set_rx_antenna(ant, channel);

    std::this_thread::sleep_for(std::chrono::milliseconds(int64_t(1000 * setup_time)));

    
    // check Ref and LO Lock detect
    if (not vm.count("skip-lo")) {
        check_locked_sensor(usrp->get_rx_sensor_names(channel),
            "lo_locked",
            [usrp, channel](const std::string& sensor_name) {
                return usrp->get_rx_sensor(sensor_name, channel);
            },
            setup_time);
        if (ref == "mimo") {
            check_locked_sensor(usrp->get_mboard_sensor_names(0),
                "mimo_locked",
                [usrp](const std::string& sensor_name) {
                    return usrp->get_mboard_sensor(sensor_name);
                },
                setup_time);
        }
        if (ref == "external") {
            check_locked_sensor(usrp->get_mboard_sensor_names(0),
                "ref_locked",
                [usrp](const std::string& sensor_name) {
                    return usrp->get_mboard_sensor(sensor_name);
                },
                setup_time);
        }
    }

    if (total_num_samps == 0) {
        std::signal(SIGINT, &sig_int_handler);
        std::cout << "Press Ctrl + C to stop streaming..." << std::endl;
    }

#define recv_to_file_args(format) \
    (usrp,                        \
        format,                   \
        wirefmt,                  \
        channel,                  \
        file,                     \
        spb,                      \
        total_num_samps,          \
        total_time,               \
        bw_summary,               \
        stats,                    \
        null,                     \
        enable_size_map,          \
        continue_on_bad_packet)
    // recv to file
    if (wirefmt == "s16") {
        if (type == "double")
            recv_to_file<double> recv_to_file_args("f64");
        else if (type == "float")
            recv_to_file<float> recv_to_file_args("f32");
        else if (type == "short")
            recv_to_file<short> recv_to_file_args("s16");
        else
            throw std::runtime_error("Unknown type " + type);
    } else {
        if (type == "double")
            recv_to_file<std::complex<double>> recv_to_file_args("fc64");
        else if (type == "float")
            recv_to_file<std::complex<float>> recv_to_file_args("fc32");
        else if (type == "short")
            recv_to_file<std::complex<short>> recv_to_file_args("sc16");
        else
            throw std::runtime_error("Unknown type " + type);
    }

    // finished
    std::cout << std::endl << "Done!" << std::endl << std::endl;

    return EXIT_SUCCESS;
}
//
// Copyright 2013 Ettus Research LLC
// Copyright 2018 Ettus Research, a National Instruments Company
//
// SPDX-License-Identifier: LGPL-3.0-or-later
//


// radio top level module for b200
//  Contains all clock-rate DSP components, all radio and hardware controls and settings

module radio_legacy
  #(
    parameter RADIO_FIFO_SIZE = 13,
    parameter SAMPLE_FIFO_SIZE = 11,
    parameter FP_GPIO = 0,
    parameter NEW_HB_INTERP = 0,
    parameter NEW_HB_DECIM = 0,
    parameter SOURCE_FLOW_CONTROL = 0,
    parameter USER_SETTINGS = 1,
    parameter DEVICE = "SPARTAN6"
  )
  (input radio_clk, input radio_rst,
   input [31:0] rx, output reg [31:0] tx,
   input [31:0] fe_gpio_in, output [31:0] fe_gpio_out, output [31:0] fe_gpio_ddr,
   input [9:0] fp_gpio_in, output [9:0] fp_gpio_out, output [9:0] fp_gpio_ddr,
   input pps, input time_sync,
   input bus_clk, input bus_rst,
   input [63:0]  tx_tdata, input tx_tlast, input tx_tvalid, output tx_tready,
   output [63:0] rx_tdata, output rx_tlast, output rx_tvalid, input rx_tready,
   input [63:0]  ctrl_tdata, input ctrl_tlast, input ctrl_tvalid, output ctrl_tready,
   output [63:0] resp_tdata, output resp_tlast, output resp_tvalid, input resp_tready,

   output reg [63:0] vita_time_b,

   output [63:0] debug
   );

   // ////////////////////////////////////////////////////////////////////////////////
   // Interconnects for the user defined registers
   
   wire [31:0] user_reg_0_value, user_reg_1_value, curr_sample_reg_value;
   wire [15:0] decoded_symbol_value;   

   reg [31:0] curr_sample_reg;


   // ///////////////////////////////////////////////////////////////////////////////
   // FIFO Interfacing to the bus clk domain
   // in_tdata splits to tx_tdata and ctrl_tdata
   // rx_tdata and resp_tdata get muxed to out_tdata
   // Everything except rx flow control must cross in to radio_clk domain before further use
   // _b signifies bus_clk domain, _r signifies radio_clk domain

   wire [63:0] 	 ctrl_tdata_r;
   wire 	 ctrl_tready_r, ctrl_tvalid_r;
   wire 	 ctrl_tlast_r;

   wire [63:0] 	 resp_tdata_r;
   wire 	 resp_tready_r, resp_tvalid_r;
   wire 	 resp_tlast_r;

   wire [63:0] 	 rx_tdata_r;
   wire 	 rx_tready_r, rx_tvalid_r;
   wire 	 rx_tlast_r;

   wire [63:0] 	 rx_err_tdata_r;
   wire 	 rx_err_tready_r, rx_err_tvalid_r;
   wire 	 rx_err_tlast_r;

   wire [63:0]     rx_prefc_tdata_r;
   wire   rx_prefc_tready_r, rx_prefc_tvalid_r;
   wire   rx_prefc_tlast_r;

   wire [63:0]     rx_postfc_tdata_r;
   wire   rx_postfc_tready_r, rx_postfc_tvalid_r;
   wire   rx_postfc_tlast_r;

   wire [63:0] 	 tx_tdata_r;
   wire 	 tx_tready_r, tx_tvalid_r;
   wire 	 tx_tlast_r;

   wire [63:0] 	 txresp_tdata, txresp_tdata_r;
   wire 	 txresp_tready, txresp_tready_r, txresp_tvalid, txresp_tvalid_r;
   wire 	 txresp_tlast, txresp_tlast_r;

   wire [63:0] 	 rmux_tdata_r;
   wire 	 rmux_tlast_r, rmux_tvalid_r, rmux_tready_r;

   wire [31:0] 	 tx_idle;
   wire [3:0] 	 ibs_state;
   wire [63:0] 	 rx_tdata_int;
   wire 	 rx_tready_int, rx_tvalid_int;
   wire 	 rx_tlast_int;


   axi_fifo_2clk #(.WIDTH(65), .SIZE(0/*minimal*/)) ctrl_fifo
     (.reset(bus_rst),
      .i_aclk(bus_clk), .i_tvalid(ctrl_tvalid), .i_tready(ctrl_tready), .i_tdata({ctrl_tlast, ctrl_tdata}),
      .o_aclk(radio_clk), .o_tvalid(ctrl_tvalid_r), .o_tready(ctrl_tready_r), .o_tdata({ctrl_tlast_r, ctrl_tdata_r}));

   axi_fifo_2clk #(.WIDTH(65), .SIZE(RADIO_FIFO_SIZE)) tx_fifo
     (.reset(bus_rst),
      .i_aclk(bus_clk), .i_tvalid(tx_tvalid), .i_tready(tx_tready), .i_tdata({tx_tlast, tx_tdata}),
      .o_aclk(radio_clk), .o_tvalid(tx_tvalid_r), .o_tready(tx_tready_r), .o_tdata({tx_tlast_r, tx_tdata_r}));

   axi_fifo_2clk #(.WIDTH(65), .SIZE(0/*minimal*/)) resp_fifo
     (.reset(radio_rst),
      .i_aclk(radio_clk), .i_tvalid(rmux_tvalid_r), .i_tready(rmux_tready_r), .i_tdata({rmux_tlast_r, rmux_tdata_r}),
      .o_aclk(bus_clk), .o_tvalid(resp_tvalid), .o_tready(resp_tready), .o_tdata({resp_tlast, resp_tdata}));

   axi_fifo_2clk #(.WIDTH(65), .SIZE(RADIO_FIFO_SIZE)) rx_fifo
     (.reset(radio_rst),
      .i_aclk(radio_clk), .i_tvalid(rx_tvalid_r), .i_tready(rx_tready_r), .i_tdata({rx_tlast_r, rx_tdata_r}),
      .o_aclk(bus_clk), .o_tvalid(rx_tvalid_int), .o_tready(rx_tready_int), .o_tdata({rx_tlast_int, rx_tdata_int}));

   axi_packet_gate #(.WIDTH(64), .SIZE(SAMPLE_FIFO_SIZE), .USE_AS_BUFF(0)) buffer_whole_pkt
     (
      .clk(bus_clk), .reset(bus_rst), .clear(1'b0),
      .i_tdata(rx_tdata_int), .i_tlast(rx_tlast_int), .i_terror(1'b0), .i_tvalid(rx_tvalid_int), .i_tready(rx_tready_int),
      .o_tdata(rx_tdata), .o_tlast(rx_tlast), .o_tvalid(rx_tvalid), .o_tready(rx_tready));

   ///////////////////////////////////////////////////////////////////////////////////////
   // Setting bus and controls

   wire [63:0]    ctrl_tdata_proc;
   wire           ctrl_tready_proc, ctrl_tvalid_proc;
   wire           ctrl_tlast_proc;

   localparam SR_LOOPBACK     = 8'd6;
   localparam SR_SPI          = 8'd8;
   localparam SR_ATR          = 8'd12; // thorugh 8'd18
   localparam SR_TEST         = 8'd21;
   localparam SR_CODEC_IDLE   = 8'd22;
   localparam SR_READBACK     = 8'd32;
   localparam SR_TX_CTRL      = 8'd64;
   localparam SR_RX_CTRL      = 8'd96;
   localparam SR_TIME         = 8'd128;
   localparam SR_RX_FMT       = 8'd136;
   localparam SR_TX_FMT       = 8'd138;
   localparam SR_RX_DSP       = 8'd144;
   localparam SR_TX_DSP       = 8'd184;
   localparam SR_FP_GPIO      = 8'd200; // thorugh 8'd206
   localparam SR_USER_SR_BASE = 8'd253;
   localparam SR_USER_RB_ADDR = 8'd255;

   wire           set_stb;
   wire [7:0]     set_addr;
   wire [31:0]    set_data;
   wire [31:0]    test_readback;
   wire [9:0] 	  fp_gpio_readback;
   wire           run_rx, run_tx;
   wire           rx_flow_ctrl_busy;

   reg [63:0]     rb_data;
   wire [2:0]     rb_addr;

   wire [63:0] vita_time, vita_time_lastpps;
   timekeeper #(.SR_TIME_HI(SR_TIME), .SR_TIME_LO(SR_TIME+1), .SR_TIME_CTRL(SR_TIME+2)) timekeeper
     (.clk(radio_clk), .reset(radio_rst), .pps(pps), .sync_in(time_sync), .strobe(1'b1),
      .set_stb(set_stb), .set_addr(set_addr), .set_data(set_data),
      .vita_time(vita_time), .vita_time_lastpps(vita_time_lastpps),
      .sync_out());

   wire [31:0] debug_radio_ctrl_proc;
   radio_ctrl_proc radio_ctrl_proc
     (.clk(radio_clk), .reset(radio_rst), .clear(1'b0),
      .ctrl_tdata(ctrl_tdata_proc), .ctrl_tlast(ctrl_tlast_proc), .ctrl_tvalid(ctrl_tvalid_proc), .ctrl_tready(ctrl_tready_proc),
      .resp_tdata(resp_tdata_r), .resp_tlast(resp_tlast_r), .resp_tvalid(resp_tvalid_r), .resp_tready(resp_tready_r),
      .vita_time(vita_time),
      .set_stb(set_stb), .set_addr(set_addr), .set_data(set_data),
      .ready(1'b1), .readback(rb_data),
      .debug(debug_radio_ctrl_proc));

   reg [63:0]     rb_data_user;
generate
   if (USER_SETTINGS == 1) begin
      wire           set_stb_user;
      wire [7:0]     set_addr_user;
      wire [31:0]    set_data_user;
      wire [7:0]     rb_addr_user;

      user_settings #(.BASE(SR_USER_SR_BASE)) user_settings
        (.clk(radio_clk), .rst(radio_rst),
         .set_stb(set_stb), .set_addr(set_addr), .set_data(set_data),
         .set_stb_user(set_stb_user), .set_addr_user(set_addr_user), .set_data_user(set_data_user));

      setting_reg #(.my_addr(SR_USER_RB_ADDR), .awidth(8), .width(8)) user_rb_addr
        (.clk(radio_clk), .rst(radio_rst), .strobe(set_stb), .addr(set_addr), .in(set_data),
         .out(rb_addr_user), .changed());

      // ----------------------------------
      // Enter user settings registers here
      // ----------------------------------

      // Example code for 32-bit settings registers and 64-bit readback registers
      //
      // To test this, modify the *_core.v file for your specific USRP and set
      // USER_SETTINGS=1 for the parameters for the radio_legacy instantiation.
      //
      // You can then use the get_user_settings_iface() like this:
      //
      // auto usrp = multi_usrp::make("type=b200,enable_user_regs");
      // auto regs = usrp->get_user_settings_iface(0);
      // regs->poke32(0, 0xCAFE);
      // regs->poke32(4, 0xBEEF);
      // std::cout << boost::format("0x%016X") % regs->peek64(0) << std::endl;
      // wire [31:0] user_reg_0_value, user_reg_1_value;

      setting_reg #(.my_addr(8'd0), .awidth(8), .width(32)) user_reg_0
        (.clk(radio_clk), .rst(radio_rst), .strobe(set_stb_user), .addr(set_addr_user), .in(set_data_user),
         .out(user_reg_0_value), .changed());

      setting_reg #(.my_addr(8'd1), .awidth(8), .width(32)) user_reg_1
        (.clk(radio_clk), .rst(radio_rst), .strobe(set_stb_user), .addr(set_addr_user), .in(set_data_user),
         .out(user_reg_1_value), .changed());

      always @* begin
         case(rb_addr_user)
            8'd0 : rb_data_user <= {user_reg_1_value[31:16], decoded_symbol_value, curr_sample_reg_value};
            //8'd0 : rb_data_user <= {user_reg_1_value, user_reg_0_value};
            default : rb_data_user <= 64'd0;
         endcase
      end

   end else begin    //for USER_SETTINGS == 1
      always @* rb_data_user <= 64'd0;
   end
endgenerate

   always @*
     case(rb_addr)
       3'd0 : rb_data <= { 32'b0, test_readback };
       3'd1 : rb_data <= vita_time;
       3'd2 : rb_data <= vita_time_lastpps;
       3'd3 : rb_data <= {tx, rx};
       3'd4 : rb_data <= {54'h0,fp_gpio_readback};
       3'd5 : rb_data <= {59'h0,rx_flow_ctrl_busy,ibs_state[3:0]}; // Monitor state of RX state machine.
//     3'd6 : rb_data <= <unused>;
       3'd7 : rb_data <= rb_data_user;
       default : rb_data <= 64'd0;
     endcase // case (rb_addr)

   //
   // Sample VITA_TIME into the bus_clk domain for use by instrumentation.
   //
   wire [63:0] vita_time_b_int;
   wire        vita_time_b_valid;

    axi_fifo_2clk #(.WIDTH(64), .SIZE(0)) vita_time_fifo
     (.reset(radio_rst),
      .i_aclk(radio_clk), .i_tvalid(1'b1), .i_tready(), .i_tdata(vita_time),
      .o_aclk(bus_clk), .o_tvalid(vita_time_b_valid), .o_tready(1'b1), .o_tdata(vita_time_b_int));

   always @(posedge bus_clk)
     if (vita_time_b_valid)
       vita_time_b <= vita_time_b_int;

   // Set this register to loop TX data directly to RX data.
   setting_reg #(.my_addr(SR_LOOPBACK), .awidth(8), .width(1)) sr_loopback
     (.clk(radio_clk), .rst(radio_rst), .strobe(set_stb), .addr(set_addr), .in(set_data),
      .out(loopback), .changed());

   setting_reg #(.my_addr(SR_TEST), .awidth(8), .width(32)) sr_test
     (.clk(radio_clk), .rst(radio_rst), .strobe(set_stb), .addr(set_addr), .in(set_data),
      .out(test_readback), .changed());

   setting_reg #(.my_addr(SR_CODEC_IDLE), .awidth(8), .width(32)) sr_codec_idle
     (.clk(radio_clk), .rst(radio_rst), .strobe(set_stb), .addr(set_addr), .in(set_data),
      .out(tx_idle), .changed());

   setting_reg #(.my_addr(SR_READBACK), .awidth(8), .width(3)) sr_rdback
     (.clk(radio_clk), .rst(radio_rst), .strobe(set_stb), .addr(set_addr), .in(set_data),
      .out(rb_addr), .changed());

   //The fe_atr pins driven by this module are always configured as outputs so default
   //the DDR (data direction register) to be all ones (outputs) so that the drive direction
   //these lines does not change during/after resets.
   gpio_atr #(.BASE(SR_ATR), .WIDTH(32), .FAB_CTRL_EN(0), .DEFAULT_DDR(32'hFFFFFFFF), .DEFAULT_IDLE(32'h00000000)) fe_gpio_atr
     (.clk(radio_clk),.reset(radio_rst),
      .set_stb(set_stb),.set_addr(set_addr),.set_data(set_data),
      .rx(run_rx), .tx(run_tx),
      .gpio_in(fe_gpio_in), .gpio_out(fe_gpio_out), .gpio_ddr(fe_gpio_ddr),
      .gpio_out_fab(32'h00000000 /* no fabric control */), .gpio_sw_rb() );

   generate
      if (FP_GPIO != 0) begin: add_fp_gpio
         gpio_atr #(.BASE(SR_FP_GPIO), .WIDTH(10), .FAB_CTRL_EN(0)) fp_gpio_atr
            (.clk(radio_clk),.reset(radio_rst),
            .set_stb(set_stb),.set_addr(set_addr),.set_data(set_data),
            .rx(run_rx), .tx(run_tx),
            .gpio_in(fp_gpio_in), .gpio_out(fp_gpio_out), .gpio_ddr(fp_gpio_ddr), 
            .gpio_out_fab(10'h000 /* no fabric control */), .gpio_sw_rb(fp_gpio_readback));
      end
   endgenerate



   ///////////////////////////////////////////////////////////////////////////////////////
   // Source flow control

generate
   if (SOURCE_FLOW_CONTROL == 1) begin

      localparam SID_PREFIX_CTRL = 2'd0;
      localparam SID_PREFIX_FC   = 2'd1;

      wire [63:0]    ctrl_tdata_fc;
      wire           ctrl_tready_fc, ctrl_tvalid_fc;
      wire           ctrl_tlast_fc;

      wire [63:0]    ctrl_hdr;
      wire [1:0]     ctrl_dest;

      assign ctrl_dest = (ctrl_hdr[1:0] == SID_PREFIX_FC) ? 2'd1 : 2'd0;

      axi_demux4 #(.ACTIVE_CHAN(4'b0011), .WIDTH(64), .BUFFER(1)) demux_proc_fc
        (.clk(radio_clk), .reset(radio_rst), .clear(1'b0),
         .header(ctrl_hdr), .dest(ctrl_dest),
         .i_tdata(ctrl_tdata_r), .i_tlast(ctrl_tlast_r), .i_tvalid(ctrl_tvalid_r), .i_tready(ctrl_tready_r),                  //Input
         .o0_tdata(ctrl_tdata_proc), .o0_tlast(ctrl_tlast_proc), .o0_tvalid(ctrl_tvalid_proc), .o0_tready(ctrl_tready_proc),  //Settings/Readback
         .o1_tdata(ctrl_tdata_fc), .o1_tlast(ctrl_tlast_fc), .o1_tvalid(ctrl_tvalid_fc), .o1_tready(ctrl_tready_fc),          //Flow control
         .o2_tdata(), .o2_tlast(), .o2_tvalid(), .o2_tready(1'b0),                                                            //Unused
         .o3_tdata(), .o3_tlast(), .o3_tvalid(), .o3_tready(1'b0));                                                           //Unused

      source_flow_control_legacy #(.BASE(SR_RX_CTRL+6)) rx_sfc
        (.clk(radio_clk), .reset(radio_rst), .clear(1'b0),
         .set_stb(set_stb), .set_addr(set_addr), .set_data(set_data),
         .fc_tdata(ctrl_tdata_fc), .fc_tlast(ctrl_tlast_fc), .fc_tvalid(ctrl_tvalid_fc), .fc_tready(ctrl_tready_fc),                      //Flow control In
         .in_tdata(rx_prefc_tdata_r), .in_tlast(rx_prefc_tlast_r), .in_tvalid(rx_prefc_tvalid_r), .in_tready(rx_prefc_tready_r),          //RX Input
         .out_tdata(rx_postfc_tdata_r), .out_tlast(rx_postfc_tlast_r), .out_tvalid(rx_postfc_tvalid_r), .out_tready(rx_postfc_tready_r),  //RX Output
         .busy(rx_flow_ctrl_busy));

   end else begin    //for SOURCE_FLOW_CONTROL == 1

      assign ctrl_tdata_proc  = ctrl_tdata_r;
      assign ctrl_tlast_proc  = ctrl_tlast_r;
      assign ctrl_tvalid_proc = ctrl_tvalid_r;
      assign ctrl_tready_r    = ctrl_tready_proc;

      assign rx_postfc_tdata_r   = rx_prefc_tdata_r;
      assign rx_postfc_tlast_r   = rx_prefc_tlast_r;
      assign rx_postfc_tvalid_r  = rx_prefc_tvalid_r;
      assign rx_prefc_tready_r   = rx_postfc_tready_r;

      assign rx_flow_ctrl_busy   = 1'b0;

   end

endgenerate

   // /////////////////////////////////////////////////////////////////////////////////
   //  TX Chain

   wire [175:0] txsample_tdata;
   wire 	txsample_tvalid, txsample_tready;
   wire [31:0] 	sample_tx;
   wire 	ack_or_error, packet_consumed;
   wire [11:0] 	seqnum;
   wire [63:0] 	error_code;
   wire [31:0] 	sid;
   wire [23:0] tx_fe_i, tx_fe_q;

   wire [31:0] debug_tx_control;

   always @(posedge radio_clk) begin
      tx[31:16] <= (run_tx) ? tx_fe_i[23:8] : tx_idle[31:16];
      tx[15:0]  <= (run_tx) ? tx_fe_q[23:8] : tx_idle[15:0];
   end

   wire [63:0] tx_tdata_i; wire tx_tlast_i, tx_tvalid_i, tx_tready_i;

   new_tx_deframer tx_deframer
     (.clk(radio_clk), .reset(radio_rst), .clear(1'b0),
      .i_tdata(tx_tdata_i), .i_tlast(tx_tlast_i), .i_tvalid(tx_tvalid_i), .i_tready(tx_tready_i),
      .sample_tdata(txsample_tdata), .sample_tvalid(txsample_tvalid), .sample_tready(txsample_tready),
      .debug());

   new_tx_control #(.BASE(SR_TX_CTRL)) tx_control
     (.clk(radio_clk), .reset(radio_rst), .clear(1'b0),
      .set_stb(set_stb), .set_addr(set_addr), .set_data(set_data),
      .vita_time(vita_time),
      .ack_or_error(ack_or_error), .packet_consumed(packet_consumed),
      .seqnum(seqnum), .error_code(error_code), .sid(sid),
      .sample_tdata(txsample_tdata), .sample_tvalid(txsample_tvalid), .sample_tready(txsample_tready),
      .sample(sample_tx), .run(run_tx), .strobe(strobe_tx),
      .debug(debug_tx_control));

   tx_responder #(.BASE(SR_TX_CTRL+2)) tx_responder
     (.clk(radio_clk), .reset(radio_rst), .clear(1'b0),
      .set_stb(set_stb), .set_addr(set_addr), .set_data(set_data),
      .ack_or_error(ack_or_error), .packet_consumed(packet_consumed),
      .seqnum(seqnum), .error_code(error_code), .sid(sid),
      .vita_time(vita_time),
      .o_tdata(txresp_tdata_r), .o_tlast(txresp_tlast_r), .o_tvalid(txresp_tvalid_r), .o_tready(txresp_tready_r));

   wire [31:0]       debug_duc_chain;
   duc_chain #(.BASE(SR_TX_DSP), .DSPNO(0), .WIDTH(24), .NEW_HB_INTERP(NEW_HB_INTERP),.DEVICE(DEVICE)) duc_chain
     (.clk(radio_clk), .rst(radio_rst), .clr(1'b0),
      .set_stb(set_stb),.set_addr(set_addr),.set_data(set_data),
      .tx_fe_i(tx_fe_i),.tx_fe_q(tx_fe_q),
      .sample(sample_tx), .run(run_tx), .strobe(strobe_tx),
      .debug(debug_duc_chain) );

`ifdef DELETE_FORMAT_CONVERSION
   assign 	     tx_tdata_i = tx_tdata_r;
   assign 	     tx_tlast_i = tx_tlast_r;
   assign 	     tx_tvalid_i = tx_tvalid_r;
   assign 	     tx_tready_r = tx_tready_i;
`else
    chdr_xxxx_to_16sc_chain #(.BASE(SR_TX_FMT)) convert_xxxx_to_16sc
     (.clk(radio_clk), .reset(radio_rst),
      .set_stb(set_stb),.set_addr(set_addr),.set_data(set_data),
      .i_tdata(tx_tdata_r), .i_tlast(tx_tlast_r), .i_tvalid(tx_tvalid_r), .i_tready(tx_tready_r),
      .o_tdata(tx_tdata_i), .o_tlast(tx_tlast_i), .o_tvalid(tx_tvalid_i), .o_tready(tx_tready_i),
      .debug());
`endif // !`ifdef DELETE_FORMAT_CONVERSION

   // /////////////////////////////////////////////////////////////////////////////////
   //  RX Chain

   wire 	full, eob_rx;
   wire 	strobe_rx;
   wire [31:0] 	sample_rx;
   wire [31:0] 	  rx_sid;
   wire [11:0] 	  rx_seqnum;
   wire [63:0] rx_tdata_i; wire rx_tlast_i, rx_tvalid_i, rx_tready_i;

   wire [31:0] debug_rx_framer;
   new_rx_framer #(.BASE(SR_RX_CTRL+4),.SAMPLE_FIFO_SIZE(SAMPLE_FIFO_SIZE)) new_rx_framer
     (.clk(radio_clk), .reset(radio_rst), .clear(1'b0),
      .set_stb(set_stb), .set_addr(set_addr), .set_data(set_data),
      .vita_time(vita_time),
      .strobe(strobe_rx), .sample(sample_rx), .run(run_rx), .eob(eob_rx), .full(full),
      .sid(rx_sid), .seqnum(rx_seqnum),
      .o_tdata(rx_tdata_i), .o_tlast(rx_tlast_i), .o_tvalid(rx_tvalid_i), .o_tready(rx_tready_i),
      .debug(debug_rx_framer));

   wire [31:0]       debug_rx_control;
   new_rx_control #(.BASE(SR_RX_CTRL)) new_rx_control
     (.clk(radio_clk), .reset(radio_rst), .clear(1'b0),
      .set_stb(set_stb), .set_addr(set_addr), .set_data(set_data),
      .vita_time(vita_time),
      .strobe(strobe_rx), .run(run_rx), .eob(eob_rx), .full(full),
      .sid(rx_sid), .seqnum(rx_seqnum),
      .err_tdata(rx_err_tdata_r), .err_tlast(rx_err_tlast_r), .err_tvalid(rx_err_tvalid_r), .err_tready(rx_err_tready_r),
      .ibs_state(ibs_state),
      .debug(debug_rx_control));

   wire [31:0] 	     debug_ddc_chain;

   // Digital Loopback TX -> RX (Pipeline immediately inside rx_frontend).
   wire [31:0] 	     rx_fe = loopback ? tx : rx;

   ddc_chain #(.BASE(SR_RX_DSP), .DSPNO(0), .WIDTH(24), .NEW_HB_DECIM(NEW_HB_DECIM), .DEVICE(DEVICE)) ddc_chain
     (.clk(radio_clk), .rst(radio_rst), .clr(1'b0),
      .set_stb(set_stb),.set_addr(set_addr),.set_data(set_data),
      .rx_fe_i({rx_fe[31:16],8'd0}),.rx_fe_q({rx_fe[15:0],8'd0}),
      .sample(sample_rx), .run(run_rx), .strobe(strobe_rx),
      .debug(debug_ddc_chain) );

   decoder_top decoder_top
     (.clock(strobe_rx),
      .enable_counter(1'b1),
      .ref_in(32'd30),  				// Hard-coded now, we will be using the user_reg_0_value to read the 'sample_rx' via the user registers
      .data_in(sample_rx),
      .decoded_symbol(decoded_symbol_value) );

   always @(posedge strobe_rx) begin
       curr_sample_reg <= sample_rx;			// Latch the sample at strobe_rx signal, we will then read the user register via the UHD 
   end

   assign curr_sample_reg_value = curr_sample_reg;


`ifdef DELETE_FORMAT_CONVERSION
   assign 	     rx_prefc_tdata_r = rx_tdata_i;
   assign 	     rx_prefc_tlast_r = rx_tlast_i;
   assign 	     rx_prefc_tvalid_r = rx_tvalid_i;
   assign 	     rx_tready_i = rx_prefc_tready_r;
`else
   chdr_16sc_to_xxxx_chain #(.BASE(SR_RX_FMT)) convert_16sc_to_xxxx
     (.clk(radio_clk), .reset(radio_rst),
      .set_stb(set_stb),.set_addr(set_addr),.set_data(set_data),
      .i_tdata(rx_tdata_i), .i_tlast(rx_tlast_i), .i_tvalid(rx_tvalid_i), .i_tready(rx_tready_i),
      .o_tdata(rx_prefc_tdata_r), .o_tlast(rx_prefc_tlast_r), .o_tvalid(rx_prefc_tvalid_r), .o_tready(rx_prefc_tready_r),
      .debug());
`endif
   // /////////////////////////////////////////////////////////////////////////////////
   //  RX Channel Muxing

   axi_mux4 #(.PRIO(1), .WIDTH(64), .BUFFER(1)) rx_mux
     (.clk(radio_clk), .reset(radio_rst), .clear(1'b0),
      .i0_tdata(rx_postfc_tdata_r), .i0_tlast(rx_postfc_tlast_r), .i0_tvalid(rx_postfc_tvalid_r), .i0_tready(rx_postfc_tready_r),
      .i1_tdata(rx_err_tdata_r), .i1_tlast(rx_err_tlast_r), .i1_tvalid(rx_err_tvalid_r), .i1_tready(rx_err_tready_r),
      .i2_tdata(64'h0), .i2_tlast(1'b0), .i2_tvalid(1'b0), .i2_tready(),
      .i3_tdata(64'h0), .i3_tlast(1'b0), .i3_tvalid(1'b0), .i3_tready(),
      .o_tdata(rx_tdata_r), .o_tlast(rx_tlast_r), .o_tvalid(rx_tvalid_r), .o_tready(rx_tready_r));

   // /////////////////////////////////////////////////////////////////////////////////
   //  Response Channel Muxing

   axi_mux4 #(.PRIO(0), .WIDTH(64)) response_mux
     (.clk(radio_clk), .reset(radio_rst), .clear(1'b0),
      .i0_tdata(txresp_tdata_r), .i0_tlast(txresp_tlast_r), .i0_tvalid(txresp_tvalid_r), .i0_tready(txresp_tready_r),
      .i1_tdata(resp_tdata_r), .i1_tlast(resp_tlast_r), .i1_tvalid(resp_tvalid_r), .i1_tready(resp_tready_r),
      .i2_tdata(64'h0), .i2_tlast(1'b0), .i2_tvalid(1'b0), .i2_tready(),
      .i3_tdata(64'h0), .i3_tlast(1'b0), .i3_tvalid(1'b0), .i3_tready(),
      .o_tdata(rmux_tdata_r), .o_tlast(rmux_tlast_r), .o_tvalid(rmux_tvalid_r), .o_tready(rmux_tready_r));




   /*******************************************************************
    * Debug only logic below here.
    ******************************************************************/
 assign debug = 0;

endmodule // radio_legacy
20c20
<     parameter USER_SETTINGS = 0,
---
>     parameter USER_SETTINGS = 1,
38a39,46
>    // 
> ////////////////////////////////////////////////////////////////////////////////
>    // Interconnects for the user defined registers
>    
>    wire [31:0] user_reg_0_value, user_reg_1_value, curr_sample_reg_value;
>    wire [15:0] decoded_symbol_value;   
> 
>    reg [31:0] curr_sample_reg;
> 
200c208
<       wire [31:0] user_reg_0_value, user_reg_1_value;
---
>       // wire [31:0] user_reg_0_value, user_reg_1_value;
212c220,221
<             8'd0 : rb_data_user <= {user_reg_1_value, user_reg_0_value};
---
>             8'd0 : rb_data_user <= {user_reg_1_value[31:16], 
> decoded_symbol_value, curr_sample_reg_value};
>             //8'd0 : rb_data_user <= {user_reg_1_value, user_reg_0_value};
451a461,474
> 
>    decoder_top decoder_top
>      (.clock(strobe_rx),
>       .enable_counter(1'b1),
>       .ref_in(32'd30),                                // Hard-coded now, we 
> will be using the user_reg_0_value to read the 'sample_rx' via the user 
> registers
>       .data_in(sample_rx),
>       .decoded_symbol(decoded_symbol_value) );
> 
>    always @(posedge strobe_rx) begin
>        curr_sample_reg <= sample_rx;                  // Latch the sample at 
> strobe_rx signal, we will then read the user register via the UHD 
>    end
> 
>    assign curr_sample_reg_value = curr_sample_reg;
> 
_______________________________________________
USRP-users mailing list
[email protected]
http://lists.ettus.com/mailman/listinfo/usrp-users_lists.ettus.com

Reply via email to