Revision: 15034
Author: [email protected]
Date: Mon Jun 10 05:05:54 2013
Log: Improve code for integral modulus calculation.
Depending on what we know about the right operand, we basically do 3
different things (and the code is actually structured this way):
* If we statically know that the right operand is a power of 2, we do
some bit fiddling instead of doing a "real" modulus calculation.
This should actually be done on the Hydrogen level, not on the
Lithium level, but this will be a separate CL.
* If type feedback tells us that the right operand is a power of 2, we
do the same as above, but guarded by conditional deoptimization to
make sure that the assumption is still valid. In the long run, we
should make this guard visible on the Hydrogen level to make it
visible for GVN and other optimizations.
* In the general case we only do the minimum steps necessary and don't
try to be too clever, because cleverness actually slows us down on
real-world code.
If we look at the code gerators for LModI, we actually see that we
basically have 3 (4 on ARM) fundamentally different translations. I
don't really like lumping them together, they should probably be
different Lithium instructions. For the time being, I restructured the
generators to make this crystal-clear, at the cost of some duplication
regarding the power-of-2 cases. This will go away when we do the
strength reduction on the Hydrogen level, so I'd like to keep it as it
is for now.
Note that the MIPS part was only slightly restructured, there is still
some work to do there.
[email protected]
Review URL: https://codereview.chromium.org/15769010
http://code.google.com/p/v8/source/detail?r=15034
Modified:
/branches/bleeding_edge/src/arm/lithium-arm.cc
/branches/bleeding_edge/src/arm/lithium-arm.h
/branches/bleeding_edge/src/arm/lithium-codegen-arm.cc
/branches/bleeding_edge/src/hydrogen-instructions.h
/branches/bleeding_edge/src/ia32/lithium-codegen-ia32.cc
/branches/bleeding_edge/src/ia32/lithium-ia32.cc
/branches/bleeding_edge/src/mips/lithium-codegen-mips.cc
/branches/bleeding_edge/src/mips/lithium-mips.cc
/branches/bleeding_edge/src/utils.h
/branches/bleeding_edge/src/x64/lithium-codegen-x64.cc
/branches/bleeding_edge/src/x64/lithium-x64.cc
=======================================
--- /branches/bleeding_edge/src/arm/lithium-arm.cc Thu Jun 6 07:31:44 2013
+++ /branches/bleeding_edge/src/arm/lithium-arm.cc Mon Jun 10 05:05:54 2013
@@ -1446,43 +1446,61 @@
LInstruction* LChunkBuilder::DoMod(HMod* instr) {
+ HValue* left = instr->left();
+ HValue* right = instr->right();
if (instr->representation().IsInteger32()) {
- ASSERT(instr->left()->representation().IsInteger32());
- ASSERT(instr->right()->representation().IsInteger32());
-
- LModI* mod;
+ ASSERT(left->representation().IsInteger32());
+ ASSERT(right->representation().IsInteger32());
if (instr->HasPowerOf2Divisor()) {
- ASSERT(!instr->CheckFlag(HValue::kCanBeDivByZero));
- LOperand* value = UseRegisterAtStart(instr->left());
- mod = new(zone()) LModI(value, UseOrConstant(instr->right()));
- } else {
- LOperand* dividend = UseRegister(instr->left());
- LOperand* divisor = UseRegister(instr->right());
- mod = new(zone()) LModI(dividend,
- divisor,
- TempRegister(),
- FixedTemp(d10),
- FixedTemp(d11));
- }
-
- if (instr->CheckFlag(HValue::kBailoutOnMinusZero) ||
- instr->CheckFlag(HValue::kCanBeDivByZero) ||
- instr->CheckFlag(HValue::kCanOverflow)) {
+ ASSERT(!right->CanBeZero());
+ LModI* mod = new(zone()) LModI(UseRegisterAtStart(left),
+ UseOrConstant(right));
+ LInstruction* result = DefineAsRegister(mod);
+ return (left->CanBeNegative() &&
+ instr->CheckFlag(HValue::kBailoutOnMinusZero))
+ ? AssignEnvironment(result)
+ : result;
+ } else if (instr->has_fixed_right_arg()) {
+ LModI* mod = new(zone()) LModI(UseRegisterAtStart(left),
+ UseRegisterAtStart(right));
return AssignEnvironment(DefineAsRegister(mod));
+ } else if (CpuFeatures::IsSupported(SUDIV)) {
+ LModI* mod = new(zone()) LModI(UseRegister(left),
+ UseRegister(right));
+ LInstruction* result = DefineAsRegister(mod);
+ return (right->CanBeZero() ||
+ (left->RangeCanInclude(kMinInt) &&
+ right->RangeCanInclude(-1) &&
+ instr->CheckFlag(HValue::kBailoutOnMinusZero)) ||
+ (left->CanBeNegative() &&
+ instr->CanBeZero() &&
+ instr->CheckFlag(HValue::kBailoutOnMinusZero)))
+ ? AssignEnvironment(result)
+ : result;
} else {
- return DefineAsRegister(mod);
+ LModI* mod = new(zone()) LModI(UseRegister(left),
+ UseRegister(right),
+ FixedTemp(d10),
+ FixedTemp(d11));
+ LInstruction* result = DefineAsRegister(mod);
+ return (right->CanBeZero() ||
+ (left->CanBeNegative() &&
+ instr->CanBeZero() &&
+ instr->CheckFlag(HValue::kBailoutOnMinusZero)))
+ ? AssignEnvironment(result)
+ : result;
}
} else if (instr->representation().IsSmiOrTagged()) {
return DoArithmeticT(Token::MOD, instr);
} else {
ASSERT(instr->representation().IsDouble());
- // We call a C function for double modulo. It can't trigger a GC.
- // We need to use fixed result register for the call.
+ // We call a C function for double modulo. It can't trigger a GC. We
need
+ // to use fixed result register for the call.
// TODO(fschneider): Allow any register as input registers.
- LOperand* left = UseFixedDouble(instr->left(), d1);
- LOperand* right = UseFixedDouble(instr->right(), d2);
- LArithmeticD* result = new(zone()) LArithmeticD(Token::MOD, left,
right);
- return MarkAsCall(DefineFixedDouble(result, d1), instr);
+ LArithmeticD* mod = new(zone()) LArithmeticD(Token::MOD,
+ UseFixedDouble(left, d1),
+ UseFixedDouble(right,
d2));
+ return MarkAsCall(DefineFixedDouble(mod, d1), instr);
}
}
=======================================
--- /branches/bleeding_edge/src/arm/lithium-arm.h Tue Jun 4 01:28:33 2013
+++ /branches/bleeding_edge/src/arm/lithium-arm.h Mon Jun 10 05:05:54 2013
@@ -575,36 +575,22 @@
};
-class LModI: public LTemplateInstruction<1, 2, 3> {
+class LModI: public LTemplateInstruction<1, 2, 2> {
public:
- // Used when the right hand is a constant power of 2.
LModI(LOperand* left,
- LOperand* right) {
- inputs_[0] = left;
- inputs_[1] = right;
- temps_[0] = NULL;
- temps_[1] = NULL;
- temps_[2] = NULL;
- }
-
- // Used for the standard case.
- LModI(LOperand* left,
LOperand* right,
- LOperand* temp,
- LOperand* temp2,
- LOperand* temp3) {
+ LOperand* temp = NULL,
+ LOperand* temp2 = NULL) {
inputs_[0] = left;
inputs_[1] = right;
temps_[0] = temp;
temps_[1] = temp2;
- temps_[2] = temp3;
}
LOperand* left() { return inputs_[0]; }
LOperand* right() { return inputs_[1]; }
LOperand* temp() { return temps_[0]; }
LOperand* temp2() { return temps_[1]; }
- LOperand* temp3() { return temps_[2]; }
DECLARE_CONCRETE_INSTRUCTION(ModI, "mod-i")
DECLARE_HYDROGEN_ACCESSOR(Mod)
=======================================
--- /branches/bleeding_edge/src/arm/lithium-codegen-arm.cc Mon Jun 10
04:33:23 2013
+++ /branches/bleeding_edge/src/arm/lithium-codegen-arm.cc Mon Jun 10
05:05:54 2013
@@ -1152,122 +1152,150 @@
void LCodeGen::DoModI(LModI* instr) {
- if (instr->hydrogen()->HasPowerOf2Divisor()) {
- Register dividend = ToRegister(instr->left());
- Register result = ToRegister(instr->result());
+ HMod* hmod = instr->hydrogen();
+ HValue* left = hmod->left();
+ HValue* right = hmod->right();
+ if (hmod->HasPowerOf2Divisor()) {
+ // TODO(svenpanne) We should really do the strength reduction on the
+ // Hydrogen level.
+ Register left_reg = ToRegister(instr->left());
+ Register result_reg = ToRegister(instr->result());
- int32_t divisor =
- HConstant::cast(instr->hydrogen()->right())->Integer32Value();
+ // Note: The code below even works when right contains kMinInt.
+ int32_t divisor = Abs(right->GetInteger32Constant());
- if (divisor < 0) divisor = -divisor;
+ Label left_is_not_negative, done;
+ if (left->CanBeNegative()) {
+ __ cmp(left_reg, Operand::Zero());
+ __ b(pl, &left_is_not_negative);
+ __ rsb(result_reg, left_reg, Operand::Zero());
+ __ and_(result_reg, result_reg, Operand(divisor - 1));
+ __ rsb(result_reg, result_reg, Operand::Zero(), SetCC);
+ if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
+ DeoptimizeIf(eq, instr->environment());
+ }
+ __ b(&done);
+ }
- Label positive_dividend, done;
- __ cmp(dividend, Operand::Zero());
- __ b(pl, &positive_dividend);
- __ rsb(result, dividend, Operand::Zero());
- __ and_(result, result, Operand(divisor - 1), SetCC);
- if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
- DeoptimizeIf(eq, instr->environment());
+ __ bind(&left_is_not_negative);
+ __ and_(result_reg, left_reg, Operand(divisor - 1));
+ __ bind(&done);
+
+ } else if (hmod->has_fixed_right_arg()) {
+ Register left_reg = ToRegister(instr->left());
+ Register right_reg = ToRegister(instr->right());
+ Register result_reg = ToRegister(instr->result());
+
+ int32_t divisor = hmod->fixed_right_arg_value();
+ ASSERT(IsPowerOf2(divisor));
+
+ // Check if our assumption of a fixed right operand still holds.
+ __ cmp(right_reg, Operand(divisor));
+ DeoptimizeIf(ne, instr->environment());
+
+ Label left_is_not_negative, done;
+ if (left->CanBeNegative()) {
+ __ cmp(left_reg, Operand::Zero());
+ __ b(pl, &left_is_not_negative);
+ __ rsb(result_reg, left_reg, Operand::Zero());
+ __ and_(result_reg, result_reg, Operand(divisor - 1));
+ __ rsb(result_reg, result_reg, Operand::Zero(), SetCC);
+ if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
+ DeoptimizeIf(eq, instr->environment());
+ }
+ __ b(&done);
}
- __ rsb(result, result, Operand::Zero());
- __ b(&done);
- __ bind(&positive_dividend);
- __ and_(result, dividend, Operand(divisor - 1));
+
+ __ bind(&left_is_not_negative);
+ __ and_(result_reg, left_reg, Operand(divisor - 1));
__ bind(&done);
- return;
- }
- // These registers hold untagged 32 bit values.
- Register left = ToRegister(instr->left());
- Register right = ToRegister(instr->right());
- Register result = ToRegister(instr->result());
- Label done;
+ } else if (CpuFeatures::IsSupported(SUDIV)) {
+ CpuFeatureScope scope(masm(), SUDIV);
- // Check for x % 0.
- if (instr->hydrogen()->CheckFlag(HValue::kCanBeDivByZero)) {
- __ cmp(right, Operand::Zero());
- DeoptimizeIf(eq, instr->environment());
- }
+ Register left_reg = ToRegister(instr->left());
+ Register right_reg = ToRegister(instr->right());
+ Register result_reg = ToRegister(instr->result());
- if (CpuFeatures::IsSupported(SUDIV)) {
- CpuFeatureScope scope(masm(), SUDIV);
- // Check for (kMinInt % -1).
- if (instr->hydrogen()->CheckFlag(HValue::kCanOverflow)) {
- Label left_not_min_int;
- __ cmp(left, Operand(kMinInt));
- __ b(ne, &left_not_min_int);
- __ cmp(right, Operand(-1));
+ Label done;
+ // Check for x % 0, sdiv might signal an exception. We have to deopt
in this
+ // case because we can't return a NaN.
+ if (right->CanBeZero()) {
+ __ cmp(right_reg, Operand::Zero());
DeoptimizeIf(eq, instr->environment());
- __ bind(&left_not_min_int);
}
- // For r3 = r1 % r2; we can have the following ARM code
- // sdiv r3, r1, r2
- // mls r3, r3, r2, r1
+ // Check for kMinInt % -1, sdiv will return kMinInt, which is not what
we
+ // want. We have to deopt if we care about -0, because we can't return
that.
+ if (left->RangeCanInclude(kMinInt) && right->RangeCanInclude(-1)) {
+ Label no_overflow_possible;
+ __ cmp(left_reg, Operand(kMinInt));
+ __ b(ne, &no_overflow_possible);
+ __ cmp(right_reg, Operand(-1));
+ if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
+ DeoptimizeIf(eq, instr->environment());
+ } else {
+ __ b(ne, &no_overflow_possible);
+ __ mov(result_reg, Operand::Zero());
+ __ jmp(&done);
+ }
+ __ bind(&no_overflow_possible);
+ }
+
+ // For 'r3 = r1 % r2' we can have the following ARM code:
+ // sdiv r3, r1, r2
+ // mls r3, r3, r2, r1
- __ sdiv(result, left, right);
- __ mls(result, result, right, left);
+ __ sdiv(result_reg, left_reg, right_reg);
+ __ mls(result_reg, result_reg, right_reg, left_reg);
- if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
- __ cmp(result, Operand::Zero());
+ // If we care about -0, test if the dividend is <0 and the result is 0.
+ if (left->CanBeNegative() &&
+ hmod->CanBeZero() &&
+ hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
+ __ cmp(result_reg, Operand::Zero());
__ b(ne, &done);
- __ cmp(left, Operand::Zero());
+ __ cmp(left_reg, Operand::Zero());
DeoptimizeIf(lt, instr->environment());
}
+ __ bind(&done);
+
} else {
+ // General case, without any SDIV support.
+ Register left_reg = ToRegister(instr->left());
+ Register right_reg = ToRegister(instr->right());
+ Register result_reg = ToRegister(instr->result());
Register scratch = scratch0();
- Register scratch2 = ToRegister(instr->temp());
- DwVfpRegister dividend = ToDoubleRegister(instr->temp2());
- DwVfpRegister divisor = ToDoubleRegister(instr->temp3());
+ ASSERT(!scratch.is(left_reg));
+ ASSERT(!scratch.is(right_reg));
+ ASSERT(!scratch.is(result_reg));
+ DwVfpRegister dividend = ToDoubleRegister(instr->temp());
+ DwVfpRegister divisor = ToDoubleRegister(instr->temp2());
+ ASSERT(!divisor.is(dividend));
DwVfpRegister quotient = double_scratch0();
-
- ASSERT(!dividend.is(divisor));
- ASSERT(!dividend.is(quotient));
- ASSERT(!divisor.is(quotient));
- ASSERT(!scratch.is(left));
- ASSERT(!scratch.is(right));
- ASSERT(!scratch.is(result));
-
- Label vfp_modulo, right_negative;
-
- __ Move(result, left);
-
- // (0 % x) must yield 0 (if x is finite, which is the case here).
- __ cmp(left, Operand::Zero());
- __ b(eq, &done);
- // Preload right in a vfp register.
- __ vmov(divisor.low(), right);
- __ b(lt, &vfp_modulo);
-
- __ cmp(left, Operand(right));
- __ b(lt, &done);
-
- // Check for (positive) power of two on the right hand side.
- __ JumpIfNotPowerOfTwoOrZeroAndNeg(right,
- scratch,
- &right_negative,
- &vfp_modulo);
- // Perform modulo operation (scratch contains right - 1).
- __ and_(result, scratch, Operand(left));
- __ b(&done);
+ ASSERT(!quotient.is(dividend));
+ ASSERT(!quotient.is(divisor));
- __ bind(&right_negative);
- // Negate right. The sign of the divisor does not matter.
- __ rsb(right, right, Operand::Zero());
+ Label done;
+ // Check for x % 0, we have to deopt in this case because we can't
return a
+ // NaN.
+ if (right->CanBeZero()) {
+ __ cmp(right_reg, Operand::Zero());
+ DeoptimizeIf(eq, instr->environment());
+ }
- __ bind(&vfp_modulo);
- // Load the arguments in VFP registers.
- // The divisor value is preloaded before. Be careful that 'right'
- // is only live on entry.
- __ vmov(dividend.low(), left);
- // From here on don't use right as it may have been reallocated
- // (for example to scratch2).
- right = no_reg;
+ __ Move(result_reg, left_reg);
+ // Load the arguments in VFP registers. The divisor value is preloaded
+ // before. Be careful that 'right_reg' is only live on entry.
+ // TODO(svenpanne) The last comments seems to be wrong nowadays.
+ __ vmov(dividend.low(), left_reg);
+ __ vmov(divisor.low(), right_reg);
__ vcvt_f64_s32(dividend, dividend.low());
__ vcvt_f64_s32(divisor, divisor.low());
- // We do not care about the sign of the divisor.
+ // We do not care about the sign of the divisor. Note that we still
handle
+ // the kMinInt % -1 case correctly, though.
__ vabs(divisor, divisor);
// Compute the quotient and round it to a 32bit integer.
__ vdiv(quotient, dividend, divisor);
@@ -1279,22 +1307,18 @@
__ vmul(double_scratch, divisor, quotient);
__ vcvt_s32_f64(double_scratch.low(), double_scratch);
__ vmov(scratch, double_scratch.low());
+ __ sub(result_reg, left_reg, scratch, SetCC);
- if (!instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
- __ sub(result, left, scratch);
- } else {
- Label ok;
- // Check for -0.
- __ sub(scratch2, left, scratch, SetCC);
- __ b(ne, &ok);
- __ cmp(left, Operand::Zero());
+ // If we care about -0, test if the dividend is <0 and the result is 0.
+ if (left->CanBeNegative() &&
+ hmod->CanBeZero() &&
+ hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
+ __ b(ne, &done);
+ __ cmp(left_reg, Operand::Zero());
DeoptimizeIf(mi, instr->environment());
- __ bind(&ok);
- // Load the result and we are done.
- __ mov(result, scratch2);
}
+ __ bind(&done);
}
- __ bind(&done);
}
=======================================
--- /branches/bleeding_edge/src/hydrogen-instructions.h Mon Jun 10 04:33:23
2013
+++ /branches/bleeding_edge/src/hydrogen-instructions.h Mon Jun 10 05:05:54
2013
@@ -1039,7 +1039,13 @@
}
Range* range() const { return range_; }
+ // TODO(svenpanne) We should really use the null object pattern here.
bool HasRange() const { return range_ != NULL; }
+ bool CanBeNegative() const { return !HasRange() ||
range()->CanBeNegative(); }
+ bool CanBeZero() const { return !HasRange() || range()->CanBeZero(); }
+ bool RangeCanInclude(int value) const {
+ return !HasRange() || range()->Includes(value);
+ }
void AddNewRange(Range* r, Zone* zone);
void RemoveLastAddedRange();
void ComputeInitialRange(Zone* zone);
=======================================
--- /branches/bleeding_edge/src/ia32/lithium-codegen-ia32.cc Mon Jun 10
04:33:23 2013
+++ /branches/bleeding_edge/src/ia32/lithium-codegen-ia32.cc Mon Jun 10
05:05:54 2013
@@ -1221,110 +1221,115 @@
void LCodeGen::DoModI(LModI* instr) {
- if (instr->hydrogen()->HasPowerOf2Divisor()) {
- Register dividend = ToRegister(instr->left());
+ HMod* hmod = instr->hydrogen();
+ HValue* left = hmod->left();
+ HValue* right = hmod->right();
+ if (hmod->HasPowerOf2Divisor()) {
+ // TODO(svenpanne) We should really do the strength reduction on the
+ // Hydrogen level.
+ Register left_reg = ToRegister(instr->left());
+ ASSERT(left_reg.is(ToRegister(instr->result())));
- int32_t divisor =
- HConstant::cast(instr->hydrogen()->right())->Integer32Value();
+ // Note: The code below even works when right contains kMinInt.
+ int32_t divisor = Abs(right->GetInteger32Constant());
- if (divisor < 0) divisor = -divisor;
+ Label left_is_not_negative, done;
+ if (left->CanBeNegative()) {
+ __ test(left_reg, Operand(left_reg));
+ __ j(not_sign, &left_is_not_negative, Label::kNear);
+ __ neg(left_reg);
+ __ and_(left_reg, divisor - 1);
+ __ neg(left_reg);
+ if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
+ DeoptimizeIf(zero, instr->environment());
+ }
+ __ jmp(&done, Label::kNear);
+ }
- Label positive_dividend, done;
- __ test(dividend, Operand(dividend));
- __ j(not_sign, &positive_dividend, Label::kNear);
- __ neg(dividend);
- __ and_(dividend, divisor - 1);
- __ neg(dividend);
- if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
- __ j(not_zero, &done, Label::kNear);
- DeoptimizeIf(no_condition, instr->environment());
- } else {
+ __ bind(&left_is_not_negative);
+ __ and_(left_reg, divisor - 1);
+ __ bind(&done);
+
+ } else if (hmod->has_fixed_right_arg()) {
+ Register left_reg = ToRegister(instr->left());
+ ASSERT(left_reg.is(ToRegister(instr->result())));
+ Register right_reg = ToRegister(instr->right());
+
+ int32_t divisor = hmod->fixed_right_arg_value();
+ ASSERT(IsPowerOf2(divisor));
+
+ // Check if our assumption of a fixed right operand still holds.
+ __ cmp(right_reg, Immediate(divisor));
+ DeoptimizeIf(not_equal, instr->environment());
+
+ Label left_is_not_negative, done;
+ if (left->CanBeNegative()) {
+ __ test(left_reg, Operand(left_reg));
+ __ j(not_sign, &left_is_not_negative, Label::kNear);
+ __ neg(left_reg);
+ __ and_(left_reg, divisor - 1);
+ __ neg(left_reg);
+ if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
+ DeoptimizeIf(zero, instr->environment());
+ }
__ jmp(&done, Label::kNear);
}
- __ bind(&positive_dividend);
- __ and_(dividend, divisor - 1);
+
+ __ bind(&left_is_not_negative);
+ __ and_(left_reg, divisor - 1);
__ bind(&done);
+
} else {
- Label done, remainder_eq_dividend, slow, both_positive;
Register left_reg = ToRegister(instr->left());
+ ASSERT(left_reg.is(eax));
Register right_reg = ToRegister(instr->right());
+ ASSERT(!right_reg.is(eax));
+ ASSERT(!right_reg.is(edx));
Register result_reg = ToRegister(instr->result());
-
- ASSERT(left_reg.is(eax));
ASSERT(result_reg.is(edx));
- ASSERT(!right_reg.is(eax));
- ASSERT(!right_reg.is(edx));
- // Check for x % 0.
- if (instr->hydrogen()->CheckFlag(HValue::kCanBeDivByZero)) {
+ Label done;
+ // Check for x % 0, idiv would signal a divide error. We have to
+ // deopt in this case because we can't return a NaN.
+ if (right->CanBeZero()) {
__ test(right_reg, Operand(right_reg));
DeoptimizeIf(zero, instr->environment());
}
- __ test(left_reg, Operand(left_reg));
- __ j(zero, &remainder_eq_dividend, Label::kNear);
- __ j(sign, &slow, Label::kNear);
-
- __ test(right_reg, Operand(right_reg));
- __ j(not_sign, &both_positive, Label::kNear);
- // The sign of the divisor doesn't matter.
- __ neg(right_reg);
-
- __ bind(&both_positive);
- // If the dividend is smaller than the nonnegative
- // divisor, the dividend is the result.
- __ cmp(left_reg, Operand(right_reg));
- __ j(less, &remainder_eq_dividend, Label::kNear);
-
- // Check if the divisor is a PowerOfTwo integer.
- Register scratch = ToRegister(instr->temp());
- __ mov(scratch, right_reg);
- __ sub(Operand(scratch), Immediate(1));
- __ test(scratch, Operand(right_reg));
- __ j(not_zero, &slow, Label::kNear);
- __ and_(left_reg, Operand(scratch));
- __ jmp(&remainder_eq_dividend, Label::kNear);
-
- // Slow case, using idiv instruction.
- __ bind(&slow);
-
- // Check for (kMinInt % -1).
- if (instr->hydrogen()->CheckFlag(HValue::kCanOverflow)) {
- Label left_not_min_int;
+ // Check for kMinInt % -1, idiv would signal a divide error. We
+ // have to deopt if we care about -0, because we can't return that.
+ if (left->RangeCanInclude(kMinInt) && right->RangeCanInclude(-1)) {
+ Label no_overflow_possible;
__ cmp(left_reg, kMinInt);
- __ j(not_zero, &left_not_min_int, Label::kNear);
+ __ j(not_equal, &no_overflow_possible, Label::kNear);
__ cmp(right_reg, -1);
- DeoptimizeIf(zero, instr->environment());
- __ bind(&left_not_min_int);
+ if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
+ DeoptimizeIf(equal, instr->environment());
+ } else {
+ __ j(not_equal, &no_overflow_possible, Label::kNear);
+ __ Set(result_reg, Immediate(0));
+ __ jmp(&done, Label::kNear);
+ }
+ __ bind(&no_overflow_possible);
}
- // Sign extend to edx.
+ // Sign extend dividend in eax into edx:eax.
__ cdq();
- // Check for (0 % -x) that will produce negative zero.
- if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
+ // If we care about -0, test if the dividend is <0 and the result is 0.
+ if (left->CanBeNegative() &&
+ hmod->CanBeZero() &&
+ hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
Label positive_left;
- Label done;
__ test(left_reg, Operand(left_reg));
__ j(not_sign, &positive_left, Label::kNear);
__ idiv(right_reg);
-
- // Test the remainder for 0, because then the result would be -0.
__ test(result_reg, Operand(result_reg));
- __ j(not_zero, &done, Label::kNear);
-
- DeoptimizeIf(no_condition, instr->environment());
+ DeoptimizeIf(zero, instr->environment());
+ __ jmp(&done, Label::kNear);
__ bind(&positive_left);
- __ idiv(right_reg);
- __ bind(&done);
- } else {
- __ idiv(right_reg);
}
- __ jmp(&done, Label::kNear);
-
- __ bind(&remainder_eq_dividend);
- __ mov(result_reg, left_reg);
-
+ __ idiv(right_reg);
__ bind(&done);
}
}
=======================================
--- /branches/bleeding_edge/src/ia32/lithium-ia32.cc Thu Jun 6 07:31:44
2013
+++ /branches/bleeding_edge/src/ia32/lithium-ia32.cc Mon Jun 10 05:05:54
2013
@@ -1524,43 +1524,54 @@
LInstruction* LChunkBuilder::DoMod(HMod* instr) {
+ HValue* left = instr->left();
+ HValue* right = instr->right();
if (instr->representation().IsInteger32()) {
- ASSERT(instr->left()->representation().IsInteger32());
- ASSERT(instr->right()->representation().IsInteger32());
-
- LInstruction* result;
+ ASSERT(left->representation().IsInteger32());
+ ASSERT(right->representation().IsInteger32());
if (instr->HasPowerOf2Divisor()) {
- ASSERT(!instr->CheckFlag(HValue::kCanBeDivByZero));
- LOperand* value = UseRegisterAtStart(instr->left());
- LModI* mod =
- new(zone()) LModI(value, UseOrConstant(instr->right()), NULL);
- result = DefineSameAsFirst(mod);
+ ASSERT(!right->CanBeZero());
+ LModI* mod = new(zone()) LModI(UseRegisterAtStart(left),
+ UseOrConstant(right),
+ NULL);
+ LInstruction* result = DefineSameAsFirst(mod);
+ return (left->CanBeNegative() &&
+ instr->CheckFlag(HValue::kBailoutOnMinusZero))
+ ? AssignEnvironment(result)
+ : result;
+ } else if (instr->has_fixed_right_arg()) {
+ LModI* mod = new(zone()) LModI(UseRegister(left),
+ UseRegisterAtStart(right),
+ NULL);
+ return AssignEnvironment(DefineSameAsFirst(mod));
} else {
- // The temporary operand is necessary to ensure that right is
- // not allocated into edx.
- LOperand* temp = FixedTemp(edx);
- LOperand* value = UseFixed(instr->left(), eax);
- LOperand* divisor = UseRegister(instr->right());
- LModI* mod = new(zone()) LModI(value, divisor, temp);
- result = DefineFixed(mod, edx);
+ // The temporary operand is necessary to ensure that right is not
+ // allocated into edx.
+ LModI* mod = new(zone()) LModI(UseFixed(left, eax),
+ UseRegister(right),
+ FixedTemp(edx));
+ LInstruction* result = DefineFixed(mod, edx);
+ return (right->CanBeZero() ||
+ (left->RangeCanInclude(kMinInt) &&
+ right->RangeCanInclude(-1) &&
+ instr->CheckFlag(HValue::kBailoutOnMinusZero)) ||
+ (left->CanBeNegative() &&
+ instr->CanBeZero() &&
+ instr->CheckFlag(HValue::kBailoutOnMinusZero)))
+ ? AssignEnvironment(result)
+ : result;
}
-
- return (instr->CheckFlag(HValue::kBailoutOnMinusZero) ||
- instr->CheckFlag(HValue::kCanBeDivByZero) ||
- instr->CheckFlag(HValue::kCanOverflow))
- ? AssignEnvironment(result)
- : result;
} else if (instr->representation().IsSmiOrTagged()) {
return DoArithmeticT(Token::MOD, instr);
} else {
ASSERT(instr->representation().IsDouble());
- // We call a C function for double modulo. It can't trigger a GC.
- // We need to use fixed result register for the call.
+ // We call a C function for double modulo. It can't trigger a GC. We
need
+ // to use fixed result register for the call.
// TODO(fschneider): Allow any register as input registers.
- LOperand* left = UseFixedDouble(instr->left(), xmm2);
- LOperand* right = UseFixedDouble(instr->right(), xmm1);
- LArithmeticD* result = new(zone()) LArithmeticD(Token::MOD, left,
right);
- return MarkAsCall(DefineFixedDouble(result, xmm1), instr);
+ LArithmeticD* mod = new(zone()) LArithmeticD(Token::MOD,
+ UseFixedDouble(left,
xmm2),
+ UseFixedDouble(right,
xmm1));
+ return MarkAsCall(DefineFixedDouble(mod, xmm1), instr);
}
}
=======================================
--- /branches/bleeding_edge/src/mips/lithium-codegen-mips.cc Mon Jun 10
04:33:23 2013
+++ /branches/bleeding_edge/src/mips/lithium-codegen-mips.cc Mon Jun 10
05:05:54 2013
@@ -1132,59 +1132,74 @@
void LCodeGen::DoModI(LModI* instr) {
- Register scratch = scratch0();
- const Register left = ToRegister(instr->left());
- const Register result = ToRegister(instr->result());
+ HMod* hmod = instr->hydrogen();
+ HValue* left = hmod->left();
+ HValue* right = hmod->right();
+ if (hmod->HasPowerOf2Divisor()) {
+ const Register scratch = scratch0();
+ const Register left_reg = ToRegister(instr->left());
+ ASSERT(!left_reg.is(scratch));
+ const Register result_reg = ToRegister(instr->result());
- Label done;
+ // Note: The code below even works when right contains kMinInt.
+ int32_t divisor = Abs(right->GetInteger32Constant());
- if (instr->hydrogen()->HasPowerOf2Divisor()) {
- Register scratch = scratch0();
- ASSERT(!left.is(scratch));
- __ mov(scratch, left);
- int32_t p2constant = HConstant::cast(
- instr->hydrogen()->right())->Integer32Value();
- ASSERT(p2constant != 0);
- // Result always takes the sign of the dividend (left).
- p2constant = abs(p2constant);
+ __ mov(scratch, left_reg);
- Label positive_dividend;
- __ Branch(USE_DELAY_SLOT, &positive_dividend, ge, left,
Operand(zero_reg));
- __ subu(result, zero_reg, left);
- __ And(result, result, p2constant - 1);
- if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
- DeoptimizeIf(eq, instr->environment(), result, Operand(zero_reg));
+ Label left_is_not_negative, done;
+ if (left->CanBeNegative()) {
+ __ Branch(USE_DELAY_SLOT, &left_is_not_negative,
+ ge, left_reg, Operand(zero_reg));
+ __ subu(result_reg, zero_reg, left_reg);
+ __ And(result_reg, result_reg, divisor - 1);
+ if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
+ DeoptimizeIf(eq, instr->environment(), result_reg,
Operand(zero_reg));
+ }
+ __ Branch(USE_DELAY_SLOT, &done);
+ __ subu(result_reg, zero_reg, result_reg);
}
- __ Branch(USE_DELAY_SLOT, &done);
- __ subu(result, zero_reg, result);
- __ bind(&positive_dividend);
- __ And(result, scratch, p2constant - 1);
+
+ __ bind(&left_is_not_negative);
+ __ And(result_reg, scratch, divisor - 1);
+ __ bind(&done);
+
} else {
+ // TODO(svenpanne) Add right->has_fixed_right_arg() case.
+
+ const Register scratch = scratch0();
+ const Register left_reg = ToRegister(instr->left());
+ const Register result_reg = ToRegister(instr->result());
+
// div runs in the background while we check for special cases.
- Register right = EmitLoadRegister(instr->right(), scratch);
- __ div(left, right);
+ Register right_reg = EmitLoadRegister(instr->right(), scratch);
+ __ div(left_reg, right_reg);
- // Check for x % 0.
- if (instr->hydrogen()->CheckFlag(HValue::kCanBeDivByZero)) {
- DeoptimizeIf(eq, instr->environment(), right, Operand(zero_reg));
+ Label done;
+ // Check for x % 0, we have to deopt in this case because we can't
return a
+ // NaN.
+ if (right->CanBeZero()) {
+ DeoptimizeIf(eq, instr->environment(), right_reg, Operand(zero_reg));
}
- // Check for (kMinInt % -1).
- if (instr->hydrogen()->CheckFlag(HValue::kCanOverflow)) {
+ // Check for kMinInt % -1, we have to deopt if we care about -0,
because we
+ // can't return that.
+ if (left->RangeCanInclude(kMinInt) && right->RangeCanInclude(-1)) {
Label left_not_min_int;
- __ Branch(&left_not_min_int, ne, left, Operand(kMinInt));
- DeoptimizeIf(eq, instr->environment(), right, Operand(-1));
+ __ Branch(&left_not_min_int, ne, left_reg, Operand(kMinInt));
+ // TODO(svenpanne) Don't deopt when we don't care about -0.
+ DeoptimizeIf(eq, instr->environment(), right_reg, Operand(-1));
__ bind(&left_not_min_int);
}
- __ Branch(USE_DELAY_SLOT, &done, ge, left, Operand(zero_reg));
- __ mfhi(result);
+ // TODO(svenpanne) Only emit the test/deopt if we have to.
+ __ Branch(USE_DELAY_SLOT, &done, ge, left_reg, Operand(zero_reg));
+ __ mfhi(result_reg);
- if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
- DeoptimizeIf(eq, instr->environment(), result, Operand(zero_reg));
+ if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
+ DeoptimizeIf(eq, instr->environment(), result_reg,
Operand(zero_reg));
}
+ __ bind(&done);
}
- __ bind(&done);
}
=======================================
--- /branches/bleeding_edge/src/mips/lithium-mips.cc Thu Jun 6 11:59:11
2013
+++ /branches/bleeding_edge/src/mips/lithium-mips.cc Mon Jun 10 05:05:54
2013
@@ -1364,43 +1364,45 @@
LInstruction* LChunkBuilder::DoMod(HMod* instr) {
+ HValue* left = instr->left();
+ HValue* right = instr->right();
if (instr->representation().IsInteger32()) {
- ASSERT(instr->left()->representation().IsInteger32());
- ASSERT(instr->right()->representation().IsInteger32());
-
- LModI* mod;
+ ASSERT(left->representation().IsInteger32());
+ ASSERT(right->representation().IsInteger32());
if (instr->HasPowerOf2Divisor()) {
- ASSERT(!instr->CheckFlag(HValue::kCanBeDivByZero));
- LOperand* value = UseRegisterAtStart(instr->left());
- mod = new(zone()) LModI(value, UseOrConstant(instr->right()));
+ ASSERT(!right->CanBeZero());
+ LModI* mod = new(zone()) LModI(UseRegisterAtStart(left),
+ UseOrConstant(right));
+ LInstruction* result = DefineAsRegister(mod);
+ return (left->CanBeNegative() &&
+ instr->CheckFlag(HValue::kBailoutOnMinusZero))
+ ? AssignEnvironment(result)
+ : result;
} else {
- LOperand* dividend = UseRegister(instr->left());
- LOperand* divisor = UseRegister(instr->right());
- mod = new(zone()) LModI(dividend,
- divisor,
- TempRegister(),
- FixedTemp(f20),
- FixedTemp(f22));
- }
-
- if (instr->CheckFlag(HValue::kBailoutOnMinusZero) ||
- instr->CheckFlag(HValue::kCanBeDivByZero) ||
- instr->CheckFlag(HValue::kCanOverflow)) {
- return AssignEnvironment(DefineAsRegister(mod));
- } else {
- return DefineAsRegister(mod);
+ LModI* mod = new(zone()) LModI(UseRegister(left),
+ UseRegister(right),
+ TempRegister(),
+ FixedTemp(f20),
+ FixedTemp(f22));
+ LInstruction* result = DefineAsRegister(mod);
+ return (right->CanBeZero() ||
+ (left->RangeCanInclude(kMinInt) &&
+ right->RangeCanInclude(-1)) ||
+ instr->CheckFlag(HValue::kBailoutOnMinusZero))
+ ? AssignEnvironment(result)
+ : result;
}
} else if (instr->representation().IsSmiOrTagged()) {
return DoArithmeticT(Token::MOD, instr);
} else {
ASSERT(instr->representation().IsDouble());
- // We call a C function for double modulo. It can't trigger a GC.
- // We need to use fixed result register for the call.
+ // We call a C function for double modulo. It can't trigger a GC. We
need
+ // to use fixed result register for the call.
// TODO(fschneider): Allow any register as input registers.
- LOperand* left = UseFixedDouble(instr->left(), f2);
- LOperand* right = UseFixedDouble(instr->right(), f4);
- LArithmeticD* result = new(zone()) LArithmeticD(Token::MOD, left,
right);
- return MarkAsCall(DefineFixedDouble(result, f2), instr);
+ LArithmeticD* mod = new(zone()) LArithmeticD(Token::MOD,
+ UseFixedDouble(left, f2),
+ UseFixedDouble(right,
f4));
+ return MarkAsCall(DefineFixedDouble(mod, f2), instr);
}
}
=======================================
--- /branches/bleeding_edge/src/utils.h Tue Jun 4 08:39:56 2013
+++ /branches/bleeding_edge/src/utils.h Mon Jun 10 05:05:54 2013
@@ -249,6 +249,13 @@
T Min(T a, T b) {
return a < b ? a : b;
}
+
+
+// Returns the absolute value of its argument.
+template <typename T>
+T Abs(T a) {
+ return a < 0 ? -a : a;
+}
// Returns the negative absolute value of its argument.
=======================================
--- /branches/bleeding_edge/src/x64/lithium-codegen-x64.cc Mon Jun 10
04:33:23 2013
+++ /branches/bleeding_edge/src/x64/lithium-codegen-x64.cc Mon Jun 10
05:05:54 2013
@@ -1032,111 +1032,116 @@
void LCodeGen::DoModI(LModI* instr) {
- if (instr->hydrogen()->HasPowerOf2Divisor()) {
- Register dividend = ToRegister(instr->left());
+ HMod* hmod = instr->hydrogen();
+ HValue* left = hmod->left();
+ HValue* right = hmod->right();
+ if (hmod->HasPowerOf2Divisor()) {
+ // TODO(svenpanne) We should really do the strength reduction on the
+ // Hydrogen level.
+ Register left_reg = ToRegister(instr->left());
+ ASSERT(left_reg.is(ToRegister(instr->result())));
- int32_t divisor =
- HConstant::cast(instr->hydrogen()->right())->Integer32Value();
+ // Note: The code below even works when right contains kMinInt.
+ int32_t divisor = Abs(right->GetInteger32Constant());
- if (divisor < 0) divisor = -divisor;
+ Label left_is_not_negative, done;
+ if (left->CanBeNegative()) {
+ __ testl(left_reg, left_reg);
+ __ j(not_sign, &left_is_not_negative, Label::kNear);
+ __ negl(left_reg);
+ __ andl(left_reg, Immediate(divisor - 1));
+ __ negl(left_reg);
+ if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
+ DeoptimizeIf(zero, instr->environment());
+ }
+ __ jmp(&done, Label::kNear);
+ }
- Label positive_dividend, done;
- __ testl(dividend, dividend);
- __ j(not_sign, &positive_dividend, Label::kNear);
- __ negl(dividend);
- __ andl(dividend, Immediate(divisor - 1));
- __ negl(dividend);
- if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
- __ j(not_zero, &done, Label::kNear);
- DeoptimizeIf(no_condition, instr->environment());
- } else {
+ __ bind(&left_is_not_negative);
+ __ andl(left_reg, Immediate(divisor - 1));
+ __ bind(&done);
+
+ } else if (hmod->has_fixed_right_arg()) {
+ Register left_reg = ToRegister(instr->left());
+ ASSERT(left_reg.is(ToRegister(instr->result())));
+ Register right_reg = ToRegister(instr->right());
+
+ int32_t divisor = hmod->fixed_right_arg_value();
+ ASSERT(IsPowerOf2(divisor));
+
+ // Check if our assumption of a fixed right operand still holds.
+ __ cmpl(right_reg, Immediate(divisor));
+ DeoptimizeIf(not_equal, instr->environment());
+
+ Label left_is_not_negative, done;
+ if (left->CanBeNegative()) {
+ __ testl(left_reg, left_reg);
+ __ j(not_sign, &left_is_not_negative, Label::kNear);
+ __ negl(left_reg);
+ __ andl(left_reg, Immediate(divisor - 1));
+ __ negl(left_reg);
+ if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
+ DeoptimizeIf(zero, instr->environment());
+ }
__ jmp(&done, Label::kNear);
}
- __ bind(&positive_dividend);
- __ andl(dividend, Immediate(divisor - 1));
+
+ __ bind(&left_is_not_negative);
+ __ andl(left_reg, Immediate(divisor - 1));
__ bind(&done);
+
} else {
- Label done, remainder_eq_dividend, slow, both_positive;
Register left_reg = ToRegister(instr->left());
+ ASSERT(left_reg.is(rax));
Register right_reg = ToRegister(instr->right());
+ ASSERT(!right_reg.is(rax));
+ ASSERT(!right_reg.is(rdx));
Register result_reg = ToRegister(instr->result());
-
- ASSERT(left_reg.is(rax));
ASSERT(result_reg.is(rdx));
- ASSERT(!right_reg.is(rax));
- ASSERT(!right_reg.is(rdx));
- // Check for x % 0.
- if (instr->hydrogen()->CheckFlag(HValue::kCanBeDivByZero)) {
+ Label done;
+ // Check for x % 0, idiv would signal a divide error. We have to
+ // deopt in this case because we can't return a NaN.
+ if (right->CanBeZero()) {
__ testl(right_reg, right_reg);
DeoptimizeIf(zero, instr->environment());
}
- __ testl(left_reg, left_reg);
- __ j(zero, &remainder_eq_dividend, Label::kNear);
- __ j(sign, &slow, Label::kNear);
-
- __ testl(right_reg, right_reg);
- __ j(not_sign, &both_positive, Label::kNear);
- // The sign of the divisor doesn't matter.
- __ neg(right_reg);
-
- __ bind(&both_positive);
- // If the dividend is smaller than the nonnegative
- // divisor, the dividend is the result.
- __ cmpl(left_reg, right_reg);
- __ j(less, &remainder_eq_dividend, Label::kNear);
-
- // Check if the divisor is a PowerOfTwo integer.
- Register scratch = ToRegister(instr->temp());
- __ movl(scratch, right_reg);
- __ subl(scratch, Immediate(1));
- __ testl(scratch, right_reg);
- __ j(not_zero, &slow, Label::kNear);
- __ andl(left_reg, scratch);
- __ jmp(&remainder_eq_dividend, Label::kNear);
-
- // Slow case, using idiv instruction.
- __ bind(&slow);
-
- // Check for (kMinInt % -1).
- if (instr->hydrogen()->CheckFlag(HValue::kCanOverflow)) {
- Label left_not_min_int;
+ // Check for kMinInt % -1, idiv would signal a divide error. We
+ // have to deopt if we care about -0, because we can't return that.
+ if (left->RangeCanInclude(kMinInt) && right->RangeCanInclude(-1)) {
+ Label no_overflow_possible;
__ cmpl(left_reg, Immediate(kMinInt));
- __ j(not_zero, &left_not_min_int, Label::kNear);
+ __ j(not_zero, &no_overflow_possible, Label::kNear);
__ cmpl(right_reg, Immediate(-1));
- DeoptimizeIf(zero, instr->environment());
- __ bind(&left_not_min_int);
+ if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
+ DeoptimizeIf(equal, instr->environment());
+ } else {
+ __ j(not_equal, &no_overflow_possible, Label::kNear);
+ __ Set(result_reg, 0);
+ __ jmp(&done, Label::kNear);
+ }
+ __ bind(&no_overflow_possible);
}
- // Sign extend eax to edx.
- // (We are using only the low 32 bits of the values.)
+ // Sign extend dividend in eax into edx:eax, since we are using only
the low
+ // 32 bits of the values.
__ cdq();
- // Check for (0 % -x) that will produce negative zero.
- if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
+ // If we care about -0, test if the dividend is <0 and the result is 0.
+ if (left->CanBeNegative() &&
+ hmod->CanBeZero() &&
+ hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
Label positive_left;
- Label done;
__ testl(left_reg, left_reg);
__ j(not_sign, &positive_left, Label::kNear);
__ idivl(right_reg);
-
- // Test the remainder for 0, because then the result would be -0.
__ testl(result_reg, result_reg);
- __ j(not_zero, &done, Label::kNear);
-
- DeoptimizeIf(no_condition, instr->environment());
+ DeoptimizeIf(zero, instr->environment());
+ __ jmp(&done, Label::kNear);
__ bind(&positive_left);
- __ idivl(right_reg);
- __ bind(&done);
- } else {
- __ idivl(right_reg);
}
- __ jmp(&done, Label::kNear);
-
- __ bind(&remainder_eq_dividend);
- __ movl(result_reg, left_reg);
-
+ __ idivl(right_reg);
__ bind(&done);
}
}
=======================================
--- /branches/bleeding_edge/src/x64/lithium-x64.cc Thu Jun 6 07:31:44 2013
+++ /branches/bleeding_edge/src/x64/lithium-x64.cc Mon Jun 10 05:05:54 2013
@@ -1437,43 +1437,54 @@
LInstruction* LChunkBuilder::DoMod(HMod* instr) {
+ HValue* left = instr->left();
+ HValue* right = instr->right();
if (instr->representation().IsInteger32()) {
- ASSERT(instr->left()->representation().IsInteger32());
- ASSERT(instr->right()->representation().IsInteger32());
-
- LInstruction* result;
+ ASSERT(left->representation().IsInteger32());
+ ASSERT(right->representation().IsInteger32());
if (instr->HasPowerOf2Divisor()) {
- ASSERT(!instr->CheckFlag(HValue::kCanBeDivByZero));
- LOperand* value = UseRegisterAtStart(instr->left());
- LModI* mod =
- new(zone()) LModI(value, UseOrConstant(instr->right()), NULL);
- result = DefineSameAsFirst(mod);
+ ASSERT(!right->CanBeZero());
+ LModI* mod = new(zone()) LModI(UseRegisterAtStart(left),
+ UseOrConstant(right),
+ NULL);
+ LInstruction* result = DefineSameAsFirst(mod);
+ return (left->CanBeNegative() &&
+ instr->CheckFlag(HValue::kBailoutOnMinusZero))
+ ? AssignEnvironment(result)
+ : result;
+ } else if (instr->has_fixed_right_arg()) {
+ LModI* mod = new(zone()) LModI(UseRegister(left),
+ UseRegisterAtStart(right),
+ NULL);
+ return AssignEnvironment(DefineSameAsFirst(mod));
} else {
// The temporary operand is necessary to ensure that right is not
// allocated into edx.
- LOperand* temp = FixedTemp(rdx);
- LOperand* value = UseFixed(instr->left(), rax);
- LOperand* divisor = UseRegister(instr->right());
- LModI* mod = new(zone()) LModI(value, divisor, temp);
- result = DefineFixed(mod, rdx);
+ LModI* mod = new(zone()) LModI(UseFixed(left, rax),
+ UseRegister(right),
+ FixedTemp(rdx));
+ LInstruction* result = DefineFixed(mod, rdx);
+ return (right->CanBeZero() ||
+ (left->RangeCanInclude(kMinInt) &&
+ right->RangeCanInclude(-1) &&
+ instr->CheckFlag(HValue::kBailoutOnMinusZero)) ||
+ (left->CanBeNegative() &&
+ instr->CanBeZero() &&
+ instr->CheckFlag(HValue::kBailoutOnMinusZero)))
+ ? AssignEnvironment(result)
+ : result;
}
-
- return (instr->CheckFlag(HValue::kBailoutOnMinusZero) ||
- instr->CheckFlag(HValue::kCanBeDivByZero) ||
- instr->CheckFlag(HValue::kCanOverflow))
- ? AssignEnvironment(result)
- : result;
} else if (instr->representation().IsSmiOrTagged()) {
return DoArithmeticT(Token::MOD, instr);
} else {
ASSERT(instr->representation().IsDouble());
- // We call a C function for double modulo. It can't trigger a GC.
- // We need to use fixed result register for the call.
+ // We call a C function for double modulo. It can't trigger a GC. We
need to
+ // use fixed result register for the call.
// TODO(fschneider): Allow any register as input registers.
- LOperand* left = UseFixedDouble(instr->left(), xmm2);
- LOperand* right = UseFixedDouble(instr->right(), xmm1);
- LArithmeticD* result = new(zone()) LArithmeticD(Token::MOD, left,
right);
- return MarkAsCall(DefineFixedDouble(result, xmm1), instr);
+ LArithmeticD* mod = new(zone()) LArithmeticD(Token::MOD,
+ UseFixedDouble(left,
xmm2),
+ UseFixedDouble(right,
xmm1));
+ return MarkAsCall(DefineFixedDouble(mod, xmm1), instr);
}
}
--
--
v8-dev mailing list
[email protected]
http://groups.google.com/group/v8-dev
---
You received this message because you are subscribed to the Google Groups "v8-dev" group.
To unsubscribe from this group and stop receiving emails from it, send an email
to [email protected].
For more options, visit https://groups.google.com/groups/opt_out.