When you look at your computer screen, your eyes in the future will search for photons emitted from the past to pull that light to strike your eyes in the present. Like a leader of lightning reaching into the sky to find a lightning bolt that will eventually erupt from a thundercloud, a detector will reach into the past to find electrons or photons that have been emitted by a source.
In a hard to comprehend interpretation of quantum mechanics, the two-state vector formalism (TSVF) is a description of quantum mechanics in terms of a causal relation in which the present is caused by quantum states of the past and of the future taken in combination. http://en.wikipedia.org/wiki/Two-state_vector_formalism The two-state vector formalism is one example of a time-symmetric interpretation of quantum mechanics (see Minority interpretations of quantum mechanics). Time-symmetric interpretations of quantum mechanics were first suggested by Walter Schottky in 1921, and later by several other scientists. The two-state vector formalism was first developed by Satosi Watanabe in 1955, who named it the Double Inferential Vector Formalism (DIVF). Watanabe proposed that information given by forwards evolving quantum states is not complete; rather, both forwards and backwards evolving quantum states are required to describe a quantum state: a first state vector that evolves from the initial conditions towards the future, and a second state vector that evolves backwards in time from future boundary conditions. Past and future measurements, taken together, provide complete information about a quantum system. Watanabe's work was later rediscovered by Yakir Aharonov, Peter Bergmann and Joel Lebowitz in 1964, who later renamed it the Two-State Vector Formalism (TSVF). Conventional prediction, as well as retrodiction, can be obtained formally by separating out the initial conditions (or, conversely, the final conditions) by performing sequences of coherence-destroying operations, thereby cancelling out the influence of the two state vectors. http://physicsworld.com/cws/article/news/2013/nov/26/physicists-ask-photons-where-have-you-been# I am sorry to complicate your reality, but a recent experiment in quantum physics seems to support TSVF. In this experiment, by placing a double-slit experiment along one path of a larger double-slit experiment, the researchers have shown that photons traverse a section of the apparatus that they neither enter nor exit. Light can get inside a dark place without any windows to enter of exit. Applying this newly discovered reality to LENR, the emergent jet produced by a cavitation bubble may be drawn to the material to be damaged by its power. The may be why an emergent jet forms to emanate from a cavitation bubble when near a metal surface, but the bubble collapses symmetrically in a sonoluminescent blue flash when no material boundary surface is close by.

