C12 is a boson and as such is LENR capable. C13 is a fermion and therefore
decisive to the formation of a bose condensate of atoms. It is reasonable
to expect that C12 will aid in the production of ultra dense hydrogen.

The same boson characteristic will support the use of lithium that has been
enriched Li6 over the fermion Li7. All elements used to produce the LENR
reaction should be a boson which includes hydrogen.

*Hydrogen with non-zero spin will not participate in the LENR reaction
whereas cooper pairs of protons will. Expect LENR reactions centered on
pairs of protons with zero spin.*



*Also, as the LERN reaction matures and more NMR active isotopes
accumulate, the LENR reactor will put out increasing levels or rf radiation
derived from the nuclear vibrations of the NMR isotope.*





*This NMR thinking also applies to the nature of the various isotopes
of hydrogen.*



*Molecular hydrogen occurs in two isomeric forms, one with its two proton
spins aligned parallel (orthohydrogen), the other with its two proton spins
aligned antiparallel (parahydrogen). At room temperature and thermal
equilibrium, hydrogen consists of approximately 75% orthohydrogen and
25%  parahydrogen.*





*Orthohydrogen hydrogen has non zero spin, this is bad for Ni/H LENR
because the non zero spin wastes magnetic energy by producing RF
radiation.Parahydrogen hydrogen has zero spin. This is good for Ni/H LENR
because this type of hydrogen is magnetically inactive.*





*This is a way to increase parahydrogen hydrogen by using a noble metal
catalyst.*



*see*



*Catalytic process for ortho-para hydrogen conversion*



*http://www.google.com/patents/US3383176
<http://www.google.com/patents/US3383176>*

On Mon, Sep 4, 2017 at 11:44 AM, JonesBeene <jone...@pacbell.net> wrote:

> Here is a detail which came up earlier – the embedded proton concept works
> best in the context of the Mills’ “hydrino hydride” where the proton and
> two very tight electrons combine into a stable ion which replaces carbon’s
> innermost orbital electron. The innermost orbital of carbon would need to
> have a binding strength which is resonant with dense hydrogen in order to
> do this so Rydberg values come into play.
>
>
>
> Holmlid, Mills, Miley, Mayer, Meulenberg and others who have written on
> the subject of dense hydrogen have different thinking on the details. They
> could all be partly correct with Mills being the most accurate for this
> detail (but he does not mention 13C).
>
>
>
> The innermost carbon electron is bound at slightly less than 490 eV which
> is exactly the 18th Rydberg multiple… yet it is not clear how significant
> that detail is in the context of coal formation.
>
>
>
> -------------------------------------
>
>
>
> In prior thread, the premise was suggested that there are two different
> species (allotropes) of carbon which are being called carbon-13. One of the
> two species is the normal isotope with 7 neutrons, but the second is
> carbon-12 with a deeply embedded proton of UDH (the ultra-dense hydrogen)
> of Holmlid.
>
>
>
> This result has happened with some types of carbon during the 100 million
> year formation process of decay from ancient vegetation under pressure in
> coal beds, especially anthracite and mineral graphite. This type of coal is
> often used to manufacture the kinds of graphite where physical anomalies
> have been witnessed.
>
>
>
> Here is another piece of evidence which points to a thermal anomaly with
> carbon which could be explained with this hypothesis. (Thanks to Can for
> the link)
>
> The Replication of an Experiment Which Produced Anomalous Excess Energy.pdf
> <https://www.lenr-forum.com/attachment/2910-the-replication-of-an-experiment-which-produced-anomalous-excess-energy-pdf/>
>
> More on those details later…
>
>
>
>
>
> --------------------------------
>
>
>

Reply via email to