Here is a translation of a Nikkei Shimbun article by me and Mr. Google. The
original Japanese text is below. I have not translated the figure. I may do
that on Wednesday.

Cold fusion: overturning the conclusion that it was “fake”

After 30 years, a series of confirmations

Jan. 14, 2018

Nikkei Shimbun morning edition

In "cold nuclear fusion," hydrogen atoms generate a nuclear fusion reaction
at room temperature to produce energy. When this phenomenon was first
observed in 1989, many researchers began studying it, but the experimental
results were not replicated and the boom quickly subsided. Roughly 30 years
have passed since then. The occurrence of excess heat, which is thought to
be caused by a nuclear reaction, has been repeatedly confirmed, mainly in
Japanese research groups which have continued this research with quiet
dedication, and which have uncovered clues about the nature of the reaction.

A research group including Toyota Group's technological think tank Technova
(Tokyo, Chiyoda-ku), Nissan Motor, Tohoku University, Kobe University,
Kyushu University, Nagoya University participate in the results of
observation of excess heat which is thought to be caused by hydrogen
nuclear reaction. These groups have obtained research funding from the New
Energy and Industrial Technology Development Organization (NEDO) and
conducted experiments for two years, ending in October 2017.

In order to compare the experimental results from different groups with
each other, researchers similar installed laboratory equipment Kobe
University and Tohoku University, and used experimental specimens with
common specifications. This duplicated experiment was carried out 16 times
while varying conditions such as sample composition and temperature, and
the conditions of heat generation were investigated. In the best-performing
case, a 120-gram sample was used, which produce excess heat of 10 to 20
watts, lasting about 1 month.

In the experiment of the same group, a sample of a metal powder was made
with a combination of palladium and nickel, copper and nickel, and
deuterium gas (which is hydrogen formed by one proton and one neutron in
the nucleus) or ordinary hydrogen gas, was injected and the reaction
occurred on the metal surface. This method of injecting hydrogen gas into a
metallic material with a microstructure is the prototype that was developed
in 2005 by Professor Emeritus Yoshiaki Ararada of Osaka University.

In 2001, Mitsubishi Heavy Industries succeeded in "transmutation" in which
cesium and strontium are changed to other elements by permeating deuterium
gas through a multilayered film made from palladium, or the like. Dr.
Yasuhiro Iwamura who was responsible for this research moved to Tohoku
University and participated as a core member in this research project.

The cold fusion method announced by researchers in the United States about
30 years ago was to electrolyze heavy water with palladium electrodes.
Although this method has been attempted extensively abroad, the research
group such as Technova has concentrated on the method of permeating
deuterium (or hydrogen) gas into the metal rather than the electrolysis
method, because they consider it more promising.

Based on these experiments, the conditions under which an exothermic
reaction occurs have been clarified. First of all, it is necessary to
combine two kinds of metal such as palladium and nickel, rather than using
a single type of metal. Moreover, when the ratio of palladium and copper
was decreased to palladium 1: nickel 7 or copper 1: nickel 7, the
generation of heat was enhanced.

"A specimen made at an appropriate ratio has a clearance structure smaller
than a nanometer (one-billionth of a meter) on the surface, and hydrogen
seems to enter into this space and a reaction occurs." Professor Emeritus
of Osaka University explains Prof. Akito Takahashi, who is a senior adviser
to the research group and Technova.

If the proportion of palladium or copper is high, these metals surround the
specimen around the specimen tightly, and it is impossible to create
"places" where hydrogen react with each other. "Heat is generated in
experiments by electrolysis, probably because these nanostructures were
made by accident on the metal electrode surface," said Prof. Takahashi. It
is also clear that exothermic reaction occurs even when the species of
hydrogen gas injected is not deuterium gas but normal hydrogen gas. Also,
when injecting gas, when the temperature inside the device was raised to
200 to 400 degrees Celsius, it was found that the exothermic reaction did
not stop within a short time, but rather continued for several weeks.

At Tohoku University's equipment, a temperature so high that it that melts
ceramics attached with metal specimen also occurs. "There is no doubt that
an unknown reaction that cannot be explained by ordinary chemical reactions
is occurring" (Prof. Iwamura). What kind of reaction is actually going on?
"Multibody fusion", which is said to occur in an extremely fine space, has
been proposed by Prof. Emeritus Takahashi. Four deuterium atoms condense to
one point and nuclear fusion occurs once beryllium is formed. This breaks
into two helium and heat is generated. In this case there is no radiation
emitted, unlike the case of normal fusion.

The research group sees that it is possible to generate 1 kilowatt of heat
which is two orders of magnitude larger than the present by improving the
structure of the sample, increasing the amount, devising the temperature
condition and so on. Cold fusion, which was once said to be "fake science"
because the experiment could not be reproduced, is still distrusted by many
researchers. Professor Emeritus Takahashi says: "I would like to
demonstrate results that will convince anyone, and to ask the world to once
again evaluate the significance of this research."

(Editorial Member Kazuki Yoshikawa)



常温核融合「ニセ」覆せ30 年越し発熱確認相次ぐ

2018/1/14 付

日本経済新聞朝刊

室温で水素原子が核融合反応を起こしてエネルギーを生み出す「常温核融合」。この現象を初めて観測したという1989年の発表で世界の研究者の参入が相次いだが、実験結果は再現されずにブームは急速にしぼんだ。それから約30年。地道に研究を続けてきた日本の研究グループを中心に核反応によるとみられる過剰熱の発生が恒常的に確認され、未知の反応の正体を探る手がかりも得られつつある。

水素の核反応によるとみられる発熱の観測の成果を重ねているのはトヨタグループの技術系シンクタンクであるテクノバ(東京・千代田)、日産自動車、東北大学、神戸大学、九州大学、名古屋大学が参加する研究グループ。新エネルギー・産業技術総合開発機構(NEDO)から研究資金を得て、2017年10月まで2年間、実験を行った。

実験結果を相互比較するため、神戸大と東北大に同規模の実験装置を設置し、共通仕様の実験試料を使った。共通実験は試料の組成や温度など条件を変えながら16回実施、熱発生の条件を探った。もっとも成績が良かったケースで120グラムの試料を使い、10~20ワットの過剰熱が約1カ月持続した。

同グループの実験は、パラジウムとニッケル、銅とニッケルといった組み合わせで金属粉末の試料を作り、陽子1個と中性子1個の原子核でできた重水素や水素のガスを注入して金属表面で反応を起こすというものだ。微細構造を持つ金属材料に水素ガスを注入するというやり方は、大阪大の荒田吉明名誉教授が05年に考案した方法が原型になっている。

01年には、三菱重工業がパラジウムなどで作った多層膜に重水素ガスを透過させることによって、セシウムやストロンチウムが別の元素に変わる「核変換」に成功している。この研究を担った岩村康弘氏は東北大に移り、今回の研究プロジェクトにも中核メンバーとして参加している。

約30年前に米国などの研究者が発表した常温核融合の方法は、パラジウムの電極で重水を電気分解するというものだった。この方法は現在も海外で盛んに試みられているが、テクノバなどの研究グループは電気分解法ではなく、金属に重水素(または水素)ガスを注入する方法が有望とみて研究を進めてきた。

実験を通じて、発熱反応が起きる条件がはっきりしてきた。まず使う金属は1種類ではだめで「パラジウムとニッケル」のように2種類を組み合わせる必要があることだ。しかも「パラジウム1対ニッケル7」「銅1対ニッケル7」のようにパラジウムや銅の比率を小さくすると熱の発生も大きかった。

「適切な比率で作った試料には表面にナノ(10億分の1)メートルより小さいすきま構造ができる。この空間に水素が入り込んで反応が起きているようだ」。研究グループ代表でテクノバのシニアアドバイザーを務める高橋亮人・大阪大名誉教授はこう説明する。

パラジウムや銅の比率が多いと、これらの金属が試料の周りをぎっしりと取り囲んでしまい、水素同士が反応する「場」ができないというわけだ。「電気分解による実験で熱が発生するのは、金属の電極表面に偶然こうしたナノ構造ができていたためだろう」と高橋名誉教授は指摘する。注入する水素ガスが、重水素ガスでなく、通常の水素ガスでも発熱反応がおきることもはっきりしてきた。また、ガスを注入するとき装置内の温度をセ氏200~400度に上げておくと、発熱反応が短時間で止まらず、数週間継続することも分かった。

東北大の装置では金属試料を取り付けたセラミックスが溶けるような高温も発生しており「通常の化学反応で説明できない未知の反応が起きていることは間違いない」(岩村特任教授)という。実際にどんな反応がおきているのか。極めて微細な空間で起きるとされる「凝集核融合」が高橋名誉教授によって提案されている。重水素原子4つが1点に凝縮して核融合していったんベリリウムができる。これがヘリウム2つに割れて熱が発生する。通常の核融合の場合に出る放射線がこの場合は出ないという。

研究グループは試料の構造を改良し、量を増やし、温度条件などを工夫することで現在より2桁大きい1キロワットの熱発生は可能とみている。かつて再現実験がうまくいかず「ニセモノの科学」といわれた常温核融合は、今も不信感を持つ研究者がいる。高橋名誉教授は「誰もが納得する結果を示してこの研究の意義を再び世に問いたい」と意気込む。

(編集委員吉川和輝)

Reply via email to