The interaction between the nuclear spin of hydrogen and a host metal like 
palladium is sensitive to “physics beyond the standard model.”

IOW – it is not well understood. However, it may be a good time to assemble the 
main features of spin coupling which leads to facilitation of fusion.

In the article below, the authors present a variational approach and calculate 
the constant J in the hydrogen molecule with controlled numerical precision, 
using the adiabatic approximation. This study supposedly improves the 
reliability of the NMR theory for searching new physics in the spin-spin 
coupling. But it gets much harder to characterize spin coupling with heavy 
metal hydrides.

The constant J (and J-coupling) is not known to be relevant to a high energy 
reaction such as to facilitate nuclear fusion – but there must be more than 
electron chemistry involved to overcome the Coulomb barrier. Some isotopes 
however, have very high intrinsic nuclear spin and palladium has one such 
isotope. The standard model would need to be altered in order to find a way for 
spin coupling to overcome the Coulomb barrier – but that may happen easily, 
especially in the context of deuterium which is the only isotope with an 
overwhelming dipole bifurcation as it approaches a target nucleus.  In addition 
to J-coupling we have Magic angles, a Nuclear Overhauser effect and Magnetic 
moment to deal with.

There is a distinct likelihood that the active isotope of cold fusion in a 
palladium lattice has been identified by the recent analysis by Biberian of a 
P&F cathode from the French experiments - which produced a large amount of 
thermal gain 20 years ago.

This is the palladium-105 isotope which converts to silver-107. Aside from that 
identification – the exact mechanism of the reaction is not known, nor is it 
known if helium ash is produced in this transmutation, or if it is – how much 
energy it represents. Nor is it certain that there is only one type of fusion 
reaction in cold fusion. There could be another distinct reaction, but as of 
now - the hard proof of transmutation only exists for the high spin isotope – 

However, almost certainly this identification of the active isotope serves to 
eliminate the hypothesis that the amount of helium produced correlates exactly 
with an energy gain in the range of 24 MeV per fusion reaction. 

At best, the gain would be less per fusion and the helium derives from 
lithium-6 fusing with palladium 105… which seems unlikely to be the prime 

More likely - for those who favor the “two step” methodology of Mills/Holmlid 
etc. or the binuclear atom of Accomazi - the proposed route is for UDD (or the 
di-deuterino or the binuclear atom) to approach the 105Pd nucleus as a neutral 
species, from whence the spin coupling results in additional range of strong 
force attraction so that we end up with a transmuted nucleus - 107Ag as a 
result  plus a free deuteron, which can thermalize without the high energy 
gamma via the intrinsic spin mechanism. 

Reply via email to