Curious? http://www.npl.washington.edu/AV/altvw12.html
"The source of the cygnons has been traced to an unusual binary star system in the constellation Cygnus. In recent years space-bourne instruments have been able to examine the universe through a new window, the x-ray part of the electromagnetic spectrum. Bright sources of x-rays have been located and catalogged, and it has been found that the constellation Cygnus contains three bright x-rays objects. One of these called Cygnus X-3 is probably the most powerful source of high energy photons in the galaxy and has become the hottest topic in astrophysics today. Cygnus X-3 is on the other side of our galaxy, about 30,000 light-years from Earth. It is a binary star system, probably consisting of a neutron-star supernova remnant orbiting a normal star which feeds it hydrogen. The system has an orbital period of 4.79 hours. That's a remarkably short period: if a neutron star of 1 solar mass were orbiting our sun with that period, its orbit would be less than one solar radius above ! the sun's surface!! The 4.79 hour period can be used as a sort of "fingerprint" to tag radiation from Cygnus X-3, which should change in strength with this characteristic period. This period has been seen in Cygnus X-3 infrared, visible, x-ray, and gamma-ray emissions. The cygnons in the underground experiments have also been found to fluctuate with the same 4.79 hour period. This is confirming evidence that they come from Cygnus X-3. It also means that they travel at essentially the velocity of light; otherwise a spread of lower velocities straggling out across 30,000 light years would wash out the time variations. Cygnons events observed with the Fly's Eye have truly enormous kinetic energies: up to 20 million times the mass-energy of a proton at rest, or 20,000 times more energy than particles from even the largest earthbound accelerators. They must have no electric charge because they travel in a straight line path from Cygnus X-3. Their path is not curved by the magnetic field of the galaxy, as the path of a proton or any other charged particle would be. Further, the cygnons are found to make many µ-mesons in their collisions with the atmosphere, suggesting that they are strongly interacting particles (like protons) rather than electromagnetic particles (gamma rays) or weak particles (neutrinos). The zero charge of the cygnons is intriguing, for all of the known stable neutral particles can be counted on the fingers of one hand with a few fingers left over. The only truly stable neutral particles are photons, neutrinos, and neutral atoms. For good measure we could include the neutron, which is unstable to beta decay with a half life of 10.6 minutes. There are good reasons for eliminating each of these as cygnon candidates. As all good Analog readers know, relativity makes clocks run slower. Neutrons could possibly make it from Cygnus X-3 to Earth before decaying if they travelled so fast that relativistic time dilation slowed their internal clock until 10 minutes of internal neutron time became equivalent to 30,000 years of earth time. But this time dilation factor needs neutrons with 100 times more energy than the most energetic cygnon events which the Fly's Eye has seen. Neutral atoms can be eliminated because the "empty space" between Earth and Cygnus X-3 is not completely empty. A pipe with a cross section one centimeter square stretching across this distance would contain about 5 grams of interstellar hydrogen. This is several thousand times more matter than required to strip some electrons from any energetic neutral atom and give it a net electrical charge. Neutrinos can be eliminated because they interact with matter too weakly, and also because the detected cygnons show a "horizon effect", diminished counts when Cygnus X-3 drops below the horizon. The gamma rays from Cygnus X-3 have about the right energy, but should, because they are electromagnetic particles, produce only 1/300 of the µ-mesons observed in cygnon events. No known neutral particle has all the characteristics of the cygnons. The inevitable conclusion is that the cygnon must be a new and previously unknown kind of particle." ----- Original Message ----- From: Frederick Sparber To: [email protected] Sent: 3/24/2007 4:03:37 AM Subject: [Vo]: A time-varying Electric Field around a Multipole might act as Tachyons if the "legs" are sequenced in the right manner. The electrostatic induction effect from this might also allow lift from a planet or moon, as well as generation of a force field, "cloaking" and "Warp 10" FTL travel. Try this three-point device next Sunday? O O O Fred http://scienceworld.wolfram.com/physics/Tachyon.html "Tachyons are a putative class of particles which able to travel faster than the speed of light. Tachyons were first proposed by physicist Arnold Sommerfeld, and named by Gerald Feinberg. The word tachyon derives from the Greek (tachus), meaning "speedy." Tachyons have the strange properties that, when they lose energy, they gain speed. Consequently, when tachyons gain energy, they slow down. The slowest speed possible for tachyons is the speed of light. Tachyons appear to violate causality (the so-called causality problem), since they could be sent to the past under the assumption that the principle of special relativity is a true law of nature, thus generating a real unavoidable time paradox (Maiorino and Rodrigues 1999). Therefore, it seems unavoidable that if tachyons exist, the principle of special relativity must be false, and there exists a unique time order for all observers in the universe independent of their state of motion. Tachyons can be assigned properties of normal matter such as spin, as well as an antiparticle (the antitachyon). And amazingly, modern presentations of tachyon theory actually allow tachyons to actually have real mass (Recami 1996). It has been proposed that tachyons could be produced from high-energy particle collisions, and tachyon searches have been undertaken in cosmic rays. Cosmic rays hit the Earth's atmosphere with high energy (some of them with speed almost 99.99% of the speed of light) making several collisions with the molecules in the atmosphere. The particles made by this collision interact with the air, creating even more particles in a phenomenon known as a cosmic ray shower. In 1973, using a large collection of particle detectors, Philip Crough and Roger Clay identified a putative superluminal particle in an air shower, although this result has never been reproduced."
timg1.gif
Description: timg1.gif
astronomy.gif
Description: astronomy.gif

