http://philica.com/display_article.php?article_id=155
excerpt: Article body 1. Basics The existence of the vacuum-energy is nowadays generally accepted. It is verified by measurements of the expansion of the universe within physical cosmology [5,6,7,8]. This type of verification of the vacuum-energy is based on the gravitation caused by the mass connected with the vacuum-energy, since energy is equivalent to mass. In the Theory of General Relativity, as the modern theory of the gravitation, the gravitative effect of vacuum-energy results in the cosmological constant Λ [9,10,11]. Although the existence of the vacuum-energy is proven, its energy-density is still unclear today. The value of the energy-density is regarded as the largest discrepancy in modern physics. As an average over several literature references of cosmology, the energy-density can be estimated at about (9.0±0.27)·10-10J/m3, whereas in Geometrodynamics a value of h·c·π/Lp4=3.32·10+113J/m3 is suspected [12]. However the latter value is calculated by an integration over all wavelengths of the quantum mechanical zero point oscillations within the vacuum (these are infinitesimally many), whereby divergence problems are suppressed simply by the means of cut-off radii. Several other approaches to suppress the divergence problems of these improper integrals (leading to the energy density) result in further other values for the energy-density of the vacuum [13,14], but they do not solve the problem of the ambiguity. At least the existence of vacuum-energy is beyond dispute, so that it should be possible to verify this energy in the laboratory. That is indeed the case. Two possible ways to this proof have been developed, namely for a metallic rotor in the electrostatic field in [2] and for a superconducting rotor in the magnetic field in [15]. Since the work presented here is based on the first mentioned method, this one is briefly recapitulated in the following lines. In Fig. 1 a metallic disk (so-called field-source, drawn in red) is electrically charged and thus it produces an electrostatic field, which interacts with the rotor (in blue drawn colour), causing an attractive force, which can be computed with simple elementary methods of classical electrodynamics, namely with the image-charge-method [16,17]. This force is well-known, it is the same force, with which an electrostatically charged plastic ruler attracts paper confetti as everybody knows from childhood. An other way to understand this attractive force is, to regard the field-source and the rotor as opposite plates of a capacitor, which are known to attract each other. But the crucial point is, that the capacitor plates are not parallel to each other, so that the force-vectors are somehow diagonal relatively to the flux-lines of the field. Consequently there is a component of the force exerting a torque onto the rotor, resulting in a rotation as soon as the bearing allows the capacitor plates (which are the rotor blades) to rotate. The trick is now: During the rotating the distance between the blue and the red capacitor plate does not change at all, so that the rotation should be continued endlessly, as long as the capacitor is electrically charged. In fact this rotation is actually proven experimentally in [18]. The fact that the experiment of [18] was carried out in air, led to doubts of physicist colleagues, who reminded that the rotation could be produced by the recoils of ionized gas-molecules of the surrounding air [19,20], because the voltage between the field-source and the rotor can sometimes reach several 10kV. In order to exclude this argument, the experiment was transferred into the vacuum, in order to avoid gas ions and their recoils - and the rotor rotated in the vacuum, without being driven by gas ions [4]. <end excerpt> They go on to describe the experiment performed in a vacuum. It does look promising. Everyone complicates the efficiency calculation by determining power first. If you know mechanical torque, the mechanical energy per cycle is a trivial calculation as is electrical energy per cycle. Terry

