As far as I can see from a short browse, these methods are not "ab initio".

How would you calculate an "absolute electronegativity" from a DFT calculation ???
I don't even know what this combined phrase means.

PS: A surface slab calculation shouldn't be too expensive ....


Am 20.12.2019 um 17:58 schrieb Subhasis Panda:


---

Dear Experts,

I wanted to calculate the absolute band edge energies for RbPbI_3 compound only (not any interface like RbPbI3 and TiO2 interface) in the orthorhombic phase. As already suggested, it's a computationally costly work and we don't have enough computational facility also in our institute. I was searching in the internet and got the following information. Looking forward to your expert opinion.


In the following reference, using Eqn 1(a) & (b) can we estimate that? It requires absolute electronegativity of the semiconductor and the band gap.
https://doi.org/10.2138/am-2000-0416

whereas in the following reference, the expressions are a little different.
http://www.rsc.org/suppdata/cp/c4/c4cp03494e/c4cp03494e1.pdf

Are these two expressions referring to the same thing?  If not which one shall we use. I've one more query, does absolute electronegativity of a material (semiconductor) changes with its crystal structure type (like bcc, fcc)?

Looking forward to your reply.
Thank you and best regards
Subhasis


On Fri, Dec 6, 2019 at 12:57 AM Peter Blaha <pbl...@theochem.tuwien.ac.at <mailto:pbl...@theochem.tuwien.ac.at>> wrote:

    This is not such a simple task. You will have to create a supercell
    simulating the interface between the two materials.

    The answer can change depending how you form the interface. Furthermore
    this can be a complicated task, as the periodicity must fit and one has
    to test/define various surfaces/interfaces (except if 2 materials
    happen
    to grow nicely epitaxically).

    A simpler but much less accurate approach is to do 2 independent
    surface
    slab calculations with sufficient vacuum. From the difference of EF and
    the coulomb potential in the middle of the vacuum (:VZERO) you get an
    absolute band edge (actually this is the work function in a solid).
    However, this method neglects band bending, charge transfer or dipole
    formations at the interface, which could completely spoil the answer.

    Am 05.12.2019 um 11:27 schrieb Subhasis Panda:
     >
     >
     > ---------- Forwarded message ---------
     > From: *Subhasis Panda* <onnyorup....@gmail.com
    <mailto:onnyorup....@gmail.com>
     > <mailto:onnyorup....@gmail.com <mailto:onnyorup....@gmail.com>>>
     > Date: Wed, Dec 4, 2019 at 2:31 PM
     > Subject: Band Edge position
     > To: A Mailing list for WIEN2k users
    <wien@zeus.theochem.tuwien.ac.at
    <mailto:wien@zeus.theochem.tuwien.ac.at>
     > <mailto:wien@zeus.theochem.tuwien.ac.at
    <mailto:wien@zeus.theochem.tuwien.ac.at>>>
     >
     >
     >
     > Dear experts,
     > How can I estimate the absolute band edge position (CB/VB) of a
     > semiconductor using Wien2k?
     > The attached figure is what I'm trying to get.
     > Looking forward to your kind help.
     >
     > --
     >
     >
     >
     > Best regards,
     > ------------------------------------------------------------
     > Subhasis Panda
     > Assistant Professor
     > Department of Physics
     > National Institute of Technology Silchar
     > Assam, India  - 788010.
     >
     > -------------------------------------------------------------
     >
     >
     > --
     >
     >
     >
     > Best regards,
     > ------------------------------------------------------------
     > Subhasis Panda
     > Assistant Professor
     > Department of Physics
     > National Institute of Technology Silchar
     > Assam, India  - 788010.
     >
     > -------------------------------------------------------------
     >
     > _______________________________________________
     > Wien mailing list
     > Wien@zeus.theochem.tuwien.ac.at
    <mailto:Wien@zeus.theochem.tuwien.ac.at>
     > http://zeus.theochem.tuwien.ac.at/mailman/listinfo/wien
     > SEARCH the MAILING-LIST at:
    http://www.mail-archive.com/wien@zeus.theochem.tuwien.ac.at/index.html
     >

-- --------------------------------------------------------------------------
    Peter BLAHA, Inst.f. Materials Chemistry, TU Vienna, A-1060 Vienna
    Phone: +43-1-58801-165300             FAX: +43-1-58801-165982
    Email: bl...@theochem.tuwien.ac.at
    <mailto:bl...@theochem.tuwien.ac.at>    WIEN2k: http://www.wien2k.at
    WWW:
    
http://www.imc.tuwien.ac.at/tc_blaha-------------------------------------------------------------------------




--



Best regards,
------------------------------------------------------------
Subhasis Panda
Assistant Professor
Department of Physics
National Institute of Technology Silchar
Assam, India  - 788010.

-------------------------------------------------------------

_______________________________________________
Wien mailing list
Wien@zeus.theochem.tuwien.ac.at
http://zeus.theochem.tuwien.ac.at/mailman/listinfo/wien
SEARCH the MAILING-LIST at:  
http://www.mail-archive.com/wien@zeus.theochem.tuwien.ac.at/index.html


--
--------------------------------------------------------------------------
Peter BLAHA, Inst.f. Materials Chemistry, TU Vienna, A-1060 Vienna
Phone: +43-1-58801-165300             FAX: +43-1-58801-165982
Email: bl...@theochem.tuwien.ac.at    WIEN2k: http://www.wien2k.at
WWW: http://www.imc.tuwien.ac.at/tc_blaha-------------------------------------------------------------------------
_______________________________________________
Wien mailing list
Wien@zeus.theochem.tuwien.ac.at
http://zeus.theochem.tuwien.ac.at/mailman/listinfo/wien
SEARCH the MAILING-LIST at:  
http://www.mail-archive.com/wien@zeus.theochem.tuwien.ac.at/index.html

Reply via email to