I am trying to run a simple CUDA kernel on my CUDA device, but even if it 
compiles I cannot manage to get it run. The compilation output is the following:

~/x10-trunk_labsrv8/x10.dist/bin/x10c++ -O -classpath 
/home/lsalucci/x10-trunk_labsrv8/x10.gml/lib/native_gml.jar -x10lib 
/home/lsalucci/x10-trunk_labsrv8/x10.gml/native_gml.properties -post '# # # -L 
/usr/lib/libblas -L /usr/lib/lapack -lblas -llapack' cuVector.x10 
cuVectorMult.x10 cuSparseCSC.x10 -o cuGMLlib
x10c++: cuGML/cuVector.cu(44): Warning: Cannot tell what pointer points to, 
assuming global memory space    
     cuGML/cuVector.cu(50): Warning: Cannot tell what pointer points to, 
assuming global memory space    
x10c++: cuGML/cuVector.cu(44): Warning: Cannot tell what pointer points to, 
assuming global memory space    
     cuGML/cuVector.cu(50): Warning: Cannot tell what pointer points to, 
assuming global memory space    
x10c++: cuGML/cuVector.cu(44): Warning: Cannot tell what pointer points to, 
assuming global memory space    
     cuGML/cuVector.cu(50): Warning: Cannot tell what pointer points to, 
assuming global memory space    
x10c++: cuGML/cuVector.cu(44): Warning: Cannot tell what pointer points to, 
assuming global memory space    
     cuGML/cuVector.cu(50): Warning: Cannot tell what pointer points to, 
assuming global memory space

Even though when I run it I get the following runtime error:

X10RT: async 78 is not a CUDA kernel.
Aborted (core dumped)

Any suggestion? Is the problem caused by my code or by the runtime?

Thanks,

Luca Salucci
------------------------------------------------------------------------------
Managing the Performance of Cloud-Based Applications
Take advantage of what the Cloud has to offer - Avoid Common Pitfalls.
Read the Whitepaper.
http://pubads.g.doubleclick.net/gampad/clk?id=121051231&iu=/4140/ostg.clktrk
_______________________________________________
X10-users mailing list
X10-users@lists.sourceforge.net
https://lists.sourceforge.net/lists/listinfo/x10-users

Reply via email to