The following issue has been updated: Updater: Alberto Massari (mailto:[EMAIL PROTECTED]) Date: Mon, 4 Oct 2004 2:29 AM Changes: description changed from I receive the following error when attempting to parse a file with a deep nesting of elements (MathML). This file validates fine using XMLSpy.
/usr/local/src/xerces-c2_2_0-Sol2.7ForCC/bin/SAX2Count test.xml Fatal Error at file /tmp/xmltest/test.xml, line 48, char 917 Message: An exception occurred! Type:RuntimeException, Message:The buffer manager cannot provide any more buffers I'm including the XML that generates this error. Any help is appreciated. Thanks, David -------- XML: <?xml version = "1.0" encoding = "UTF-8" standalone="no" ?> <!DOCTYPE euclid_issue SYSTEM "http://ProjectEuclid.org/Dienst/htdocs/euclid/dtds/euclid_issue.dtd"> <euclid_issue version = "1.3"> <header> <issue_identifier>jor ABC, vol 2, iss 3-4 (1997)</issue_identifier> <timestamp>200304071929032</timestamp> <euclid_journal_id>Test Data</euclid_journal_id> <contact> <contact_name>David Fielding</contact_name> <email>[EMAIL PROTECTED]</email> <phone>345-0000</phone> </contact> </header> <issue> <issue_data> <journal_vol_number>2</journal_vol_number> <issue_number label = "Number">3-4</issue_number> <issue_publ_date iso8601 = "1997" type = "print">1997</issue_publ_date> <start_page>185</start_page> <end_page>315</end_page> </issue_data> <record> <identifiers> <identifier type = "pii">S1080033X</identifier> <identifier type = "doi">14.55/S13X</identifier> </identifiers> <title>A result test eigenvalue</title> <author order = "1"> <name> <given_name>P.</given_name> <surname>Dek</surname> </name> </author> <author order = "2"> <name> <given_name>A.</given_name> <surname>Eil</surname> </name> </author> <author order = "3"> <name> <given_name>A.</given_name> <surname>Toni</surname> </name> </author> <abstract> <p>We study bifurcation in any bounded domain <math alttext="$\Omega$"><mi>Ω</mi></math> in <math alttext="$\mathbb{R}^N$"><mrow><msup><mi>ℝ</mi><mi>N</mi></msup></mrow></math>: <math display="block" alttext="$$\begin{cases}A_pu := -\sum^N_{i,j=1}\frac{\partial}{\partial x_i}[(\sum^N_{m,k=1}a_{mk}(x)\frac{\partial u}{\partial x_m}\frac{\partial u}{\partial x_k})^{\frac{p-2}{2}}a_{ij}(x)\frac{\partial u}{\partial x_j}]=\lambda g(x)|u|^{p-2}u + f(x,u,\lambda),u\in W_0^{1,p}(\Omega)\end{cases}$$"><mrow><mrow><mo>{</mo><mtable columnalign="left"><mtr><mtd><msub><mi>A</mi><mi>p</mi></msub><mi>u</mi><mo>:</mo><mo>=</mo><mo>−</mo><munderover><mo>∑</mo><mrow><mi>i</mi><mo>,</mo><mi>j</mi><mo>=</mo><mn>1</mn></mrow><mi>N</mi></munderover><mrow><mfrac><mo>∂</mo><mrow><mo>∂</mo><msub><mi>x</mi><mi>i</mi></msub></mrow></mfrac><mrow><mo>[</mo><mrow><msup><mrow><mrow><mo>(</mo><mrow><munderover><mo>∑</mo><mrow><mi>m</mi><mo>,</mo><mi>k</mi><mo>=</mo><mn>1</mn></mrow><mi>N</mi></munderover><mrow><msub><mi>a</mi><mrow><mi>m</mi><mi>k</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mfrac><mrow><mo>∂</mo><mi>u</mi></mrow><mrow><mo>∂</mo><msub><mi>x</mi><mi>m</mi></msub></mrow></mfrac><mfrac><mrow><mo>∂</mo><mi>u</mi></mrow><mrow><mo>∂</mo><msub><mi>x</mi><mi>k</mi></msub></mrow></mfrac></mrow></mrow><mo>)</mo></mrow></mrow><mrow><mfrac><mrow><mi>p</mi><mo>−</mo><mn>2</mn></mrow><mn>2</mn></mfrac></mrow></msup><msub><mi>a</mi><mrow><mi>i</mi><mi>j</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mfrac><mrow><mo>∂</mo><mi>u</mi></mrow><mrow><mo>∂</mo><msub><mi>x</mi><mi>j</mi></msub></mrow></mfrac></mrow><mo>]</mo></mrow><mo>=</mo></mrow></mtd></mtr><mtr><mtd><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mi>λ</mi><mi>g</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><msup><mrow><mo>|</mo><mi>u</mi><mo>|</mo></mrow><mrow><mi>p</mi><mo>−</mo><mn>2</mn></mrow></msup><mi>u</mi><mo>+</mo><mi>f</mi><mrow><mo>(</mo><mrow><mi>x</mi><mo>,</mo><mi>u</mi><mo>,</mo><mi>λ</mi></mrow><mo>)</mo></mrow><mo>,</mo></mtd></mtr><mtr><mtd><mrow></mrow></mtd></mtr><mtr><mtd><mi>u</mi><mo>∈</mo><msubsup><mi>W</mi><mn>0</mn><mrow><mn>1</mn><mo>,</mo><mi>p</mi></mrow></msubsup><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow><mo>.</mo></mtd></mtr></mtable></mrow></mrow></math>. We prove that the principal eigenvalue <math alttext="$\lambda_1$"><msub><mi>λ</mi><mn>1</mn></msub></math> of the eigenvalue problem <math display="block" alttext="$$\begin{cases}A_pu =\lambda g(x)|u|^{p-2}u,u\in W_0^{1,p}(\Omega),\end{cases}$$"><mrow><mrow><mo>{</mo><mtable columnalign="left"><mtr><mtd><msub><mi>A</mi><mi>p</mi></msub><mi>u</mi><mo>=</mo><mi>λ</mi><mi>g</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><msup><mrow><mo>|</mo><mi>u</mi><mo>|</mo></mrow><mrow><mi>p</mi><mo>−</mo><mn>2</mn></mrow></msup><mi>u</mi><mo>,</mo></mtd></mtr><mtr><mtd><mi>u</mi><mo>∈</mo><msubsup><mi>W</mi><mn>0</mn><mrow><mn>1</mn><mo>,</mo><mi>p</mi></mrow></msubsup><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow><mo>,</mo></mtd></mtr></mtable></mrow></mrow></math> is a bifurcation point of the problem mentioned above.</p> </abstract> <keywords> <keyword>indefinite</keyword> </keywords> <subjects> <subject scheme = "msc1991" rank = "primary">35B36</subject> <subject scheme = "msc1991" rank = "primary"> 35J34</subject> <subject scheme = "msc1991" rank = "secondary"> 35P34</subject> </subjects> <start_page>155</start_page> <end_page>165</end_page> <record_filename filetype = "pdfview">S1.pdf</record_filename> <record_filename filetype = "tex">S1.ref</record_filename> </record> </issue> </euclid_issue> to I receive the following error when attempting to parse a file with a deep nesting of elements (MathML). This file validates fine using XMLSpy. /usr/local/src/xerces-c2_2_0-Sol2.7ForCC/bin/SAX2Count test.xml Fatal Error at file /tmp/xmltest/test.xml, line 48, char 917 Message: An exception occurred! Type:RuntimeException, Message:The buffer manager cannot provide any more buffers I'm including the XML that generates this error. Any help is appreciated. Thanks, David -------- XML: <?xml version = "1.0" encoding = "UTF-8" standalone="no" ?> <!DOCTYPE euclid_issue SYSTEM "http://ProjectEuclid.org/Dienst/htdocs/euclid/dtds/euclid_issue.dtd"> <euclid_issue version = "1.3"> <header> <issue_identifier>jor ABC, vol 2, iss 3-4 (1997)</issue_identifier> <timestamp>200304071929032</timestamp> <euclid_journal_id>Test Data</euclid_journal_id> <contact> <contact_name>David Fielding</contact_name> <email>[EMAIL PROTECTED]</email> <phone>345-0000</phone> </contact> </header> <issue> <issue_data> <journal_vol_number>2</journal_vol_number> <issue_number label = "Number">3-4</issue_number> <issue_publ_date iso8601 = "1997" type = "print">1997</issue_publ_date> <start_page>185</start_page> <end_page>315</end_page> </issue_data> <record> <identifiers> <identifier type = "pii">S1080033X</identifier> <identifier type = "doi">14.55/S13X</identifier> </identifiers> <title>A result test eigenvalue</title> <author order = "1"> <name> <given_name>P.</given_name> <surname>Dek</surname> </name> </author> <author order = "2"> <name> <given_name>A.</given_name> <surname>Eil</surname> </name> </author> <author order = "3"> <name> <given_name>A.</given_name> <surname>Toni</surname> </name> </author> <abstract> <p>We study bifurcation in any bounded domain <math alttext="$\Omega$"><mi>Ω</mi></math> in <math alttext="$\mathbb{R}^N$"><mrow><msup><mi>ℝ</mi><mi>N</mi></msup></mrow></math>: <math display="block" alttext="$$\begin{cases}A_pu := -\sum^N_{i,j=1}\frac{\partial}{\partial x_i}[(\sum^N_{m,k=1}a_{mk}(x)\frac{\partial u}{\partial x_m}\frac{\partial u}{\partial x_k})^{\frac{p-2}{2}}a_{ij}(x)\frac{\partial u}{\partial x_j}]=\lambda g(x)|u|^{p-2}u + f(x,u,\lambda),u\in W_0^{1,p}(\Omega)\end{cases}$$"><mrow><mrow><mo>{</mo><mtable columnalign="left"><mtr><mtd><msub><mi>A</mi><mi>p</mi></msub><mi>u</mi><mo>:</mo><mo>=</mo><mo>−</mo><munderover><mo>∑</mo><mrow><mi>i</mi><mo>,</mo><mi>j</mi><mo>=</mo><mn>1</mn></mrow><mi>N</mi></munderover><mrow><mfrac><mo>∂</mo><mrow><mo>∂</mo><msub><mi>x</mi><mi>i</mi></msub></mrow></mfrac><mrow><mo>[</mo><mrow><msup><mrow><mrow><mo>(</mo><mrow><munderover><mo>∑</mo><mrow><mi>m</mi><mo>,</mo><mi>k</mi><mo>=</mo><mn>1</mn></mrow><mi>N</mi></munderover><mrow><msub><mi>a</mi><mrow><mi>m</mi><mi>k</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mfrac><mrow><mo>∂</mo><mi>u</mi></mrow><mrow><mo>∂</mo><msub><mi>x</mi><mi>m</mi></msub></mrow></mfrac><mfrac><mrow><mo>∂</mo><mi>u</mi></mrow><mrow><mo>∂</mo><msub><mi>x</mi><mi>k</mi></msub></mrow></mfrac></mrow></mrow><mo>)</mo></mrow></mrow><mrow><mfrac><mrow><mi>p</mi><mo>−</mo><mn>2</mn></mrow><mn>2</mn></mfrac></mrow></msup><msub><mi>a</mi><mrow><mi>i</mi><mi>j</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mfrac><mrow><mo>∂</mo><mi>u</mi></mrow><mrow><mo>∂</mo><msub><mi>x</mi><mi>j</mi></msub></mrow></mfrac></mrow><mo>]</mo></mrow><mo>=</mo></mrow></mtd></mtr><mtr><mtd><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mi>λ</mi><mi>g</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><msup><mrow><mo>|</mo><mi>u</mi><mo>|</mo></mrow><mrow><mi>p</mi><mo>−</mo><mn>2</mn></mrow></msup><mi>u</mi><mo>+</mo><mi>f</mi><mrow><mo>(</mo><mrow><mi>x</mi><mo>,</mo><mi>u</mi><mo>,</mo><mi>λ</mi></mrow><mo>)</mo></mrow><mo>,</mo></mtd></mtr><mtr><mtd><mrow></mrow></mtd></mtr><mtr><mtd><mi>u</mi><mo>∈</mo><msubsup><mi>W</mi><mn>0</mn><mrow><mn>1</mn><mo>,</mo><mi>p</mi></mrow></msubsup><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow><mo>.</mo></mtd></mtr></mtable></mrow></mrow></math>. We prove that the principal eigenvalue <math alttext="$\lambda_1$"><msub><mi>λ</mi><mn>1</mn></msub></math> of the eigenvalue problem <math display="block" alttext="$$\begin{cases}A_pu =\lambda g(x)|u|^{p-2}u,u\in W_0^{1,p}(\Omega),\end{cases}$$"><mrow><mrow><mo>{</mo><mtable columnalign="left"><mtr><mtd><msub><mi>A</mi><mi>p</mi></msub><mi>u</mi><mo>=</mo><mi>λ</mi><mi>g</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><msup><mrow><mo>|</mo><mi>u</mi><mo>|</mo></mrow><mrow><mi>p</mi><mo>−</mo><mn>2</mn></mrow></msup><mi>u</mi><mo>,</mo></mtd></mtr><mtr><mtd><mi>u</mi><mo>∈</mo><msubsup><mi>W</mi><mn>0</mn><mrow><mn>1</mn><mo>,</mo><mi>p</mi></mrow></msubsup><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow><mo>,</mo></mtd></mtr></mtable></mrow></mrow></math> is a bifurcation point of the problem mentioned above.</p> </abstract> <keywords> <keyword>indefinite</keyword> </keywords> <subjects> <subject scheme = "msc1991" rank = "primary">35B36</subject> <subject scheme = "msc1991" rank = "primary"> 35J34</subject> <subject scheme = "msc1991" rank = "secondary"> 35P34</subject> </subjects> <start_page>155</start_page> <end_page>165</end_page> <record_filename filetype = "pdfview">S1.pdf</record_filename> <record_filename filetype = "tex">S1.ref</record_filename> </record> </issue> </euclid_issue> environment changed from Operating System: Solaris Platform: Sun to Operating System: Solaris Platform: Sun priority changed to Blocker Fix Version changed to 2.6.0 --------------------------------------------------------------------- For a full history of the issue, see: http://issues.apache.org/jira/browse/XERCESC-866?page=history --------------------------------------------------------------------- View the issue: http://issues.apache.org/jira/browse/XERCESC-866 Here is an overview of the issue: --------------------------------------------------------------------- Key: XERCESC-866 Summary: ERROR: The buffer manager cannot provide any more buffers Type: Bug Status: Resolved Priority: Blocker Resolution: FIXED Project: Xerces-C++ Components: Miscellaneous Fix Fors: 2.6.0 Versions: 2.2.0 Assignee: Reporter: dlf2 Created: Fri, 18 Apr 2003 5:42 PM Updated: Mon, 4 Oct 2004 2:29 AM Environment: Operating System: Solaris Platform: Sun Description: I receive the following error when attempting to parse a file with a deep nesting of elements (MathML). This file validates fine using XMLSpy. /usr/local/src/xerces-c2_2_0-Sol2.7ForCC/bin/SAX2Count test.xml Fatal Error at file /tmp/xmltest/test.xml, line 48, char 917 Message: An exception occurred! Type:RuntimeException, Message:The buffer manager cannot provide any more buffers I'm including the XML that generates this error. Any help is appreciated. Thanks, David -------- XML: <?xml version = "1.0" encoding = "UTF-8" standalone="no" ?> <!DOCTYPE euclid_issue SYSTEM "http://ProjectEuclid.org/Dienst/htdocs/euclid/dtds/euclid_issue.dtd"> <euclid_issue version = "1.3"> <header> <issue_identifier>jor ABC, vol 2, iss 3-4 (1997)</issue_identifier> <timestamp>200304071929032</timestamp> <euclid_journal_id>Test Data</euclid_journal_id> <contact> <contact_name>David Fielding</contact_name> <email>[EMAIL PROTECTED]</email> <phone>345-0000</phone> </contact> </header> <issue> <issue_data> <journal_vol_number>2</journal_vol_number> <issue_number label = "Number">3-4</issue_number> <issue_publ_date iso8601 = "1997" type = "print">1997</issue_publ_date> <start_page>185</start_page> <end_page>315</end_page> </issue_data> <record> <identifiers> <identifier type = "pii">S1080033X</identifier> <identifier type = "doi">14.55/S13X</identifier> </identifiers> <title>A result test eigenvalue</title> <author order = "1"> <name> <given_name>P.</given_name> <surname>Dek</surname> </name> </author> <author order = "2"> <name> <given_name>A.</given_name> <surname>Eil</surname> </name> </author> <author order = "3"> <name> <given_name>A.</given_name> <surname>Toni</surname> </name> </author> <abstract> <p>We study bifurcation in any bounded domain <math alttext="$\Omega$"><mi>Ω</mi></math> in <math alttext="$\mathbb{R}^N$"><mrow><msup><mi>ℝ</mi><mi>N</mi></msup></mrow></math>: <math display="block" alttext="$$\begin{cases}A_pu := -\sum^N_{i,j=1}\frac{\partial}{\partial x_i}[(\sum^N_{m,k=1}a_{mk}(x)\frac{\partial u}{\partial x_m}\frac{\partial u}{\partial x_k})^{\frac{p-2}{2}}a_{ij}(x)\frac{\partial u}{\partial x_j}]=\lambda g(x)|u|^{p-2}u + f(x,u,\lambda),u\in W_0^{1,p}(\Omega)\end{cases}$$"><mrow><mrow><mo>{</mo><mtable columnalign="left"><mtr><mtd><msub><mi>A</mi><mi>p</mi></msub><mi>u</mi><mo>:</mo><mo>=</mo><mo>−</mo><munderover><mo>∑</mo><mrow><mi>i</mi><mo>,</mo><mi>j</mi><mo>=</mo><mn>1</mn></mrow><mi>N</mi></munderover><mrow><mfrac><mo>∂</mo><mrow><mo>∂</mo><msub><mi>x</mi><mi>i</mi></msub></mrow></mfrac><mrow><mo>[</mo><mrow><msup><mrow><mrow><mo>(</mo><mrow><munderover><mo>∑</mo><mrow><mi>m</mi><mo>,</mo><mi>k</mi><mo>=</mo><mn>1</mn></mrow><mi>N</mi></munderover><mrow><msub><mi>a</mi><mrow><mi>m</mi><mi>k</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mfrac><mrow><mo>∂</mo><mi>u</mi></mrow><mrow><mo>∂</mo><msub><mi>x</mi><mi>m</mi></msub></mrow></mfrac><mfrac><mrow><mo>∂</mo><mi>u</mi></mrow><mrow><mo>∂</mo><msub><mi>x</mi><mi>k</mi></msub></mrow></mfrac></mrow></mrow><mo>)</mo></mrow></mrow><mrow><mfrac><mrow><mi>p</mi><mo>−</mo><mn>2</mn></mrow><mn>2</mn></mfrac></mrow></msup><msub><mi>a</mi><mrow><mi>i</mi><mi>j</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mfrac><mrow><mo>∂</mo><mi>u</mi></mrow><mrow><mo>∂</mo><msub><mi>x</mi><mi>j</mi></msub></mrow></mfrac></mrow><mo>]</mo></mrow><mo>=</mo></mrow></mtd></mtr><mtr><mtd><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mi>λ</mi><mi>g</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><msup><mrow><mo>|</mo><mi>u</mi><mo>|</mo></mrow><mrow><mi>p</mi><mo>−</mo><mn>2</mn></mrow></msup><mi>u</mi><mo>+</mo><mi>f</mi><mrow><mo>(</mo><mrow><mi>x</mi><mo>,</mo><mi>u</mi><mo>,</mo><mi>λ</mi></mrow><mo>)</mo></mrow><mo>,</mo></mtd></mtr><mtr><mtd><mrow></mrow></mtd></mtr><mtr><mtd><mi>u</mi><mo>∈</mo><msubsup><mi>W</mi><mn>0</mn><mrow><mn>1</mn><mo>,</mo><mi>p</mi></mrow></msubsup><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow><mo>.</mo></mtd></mtr></mtable></mrow></mrow></math>. We prove that the principal eigenvalue <math alttext="$\lambda_1$"><msub><mi>λ</mi><mn>1</mn></msub></math> of the eigenvalue problem <math display="block" alttext="$$\begin{cases}A_pu =\lambda g(x)|u|^{p-2}u,u\in W_0^{1,p}(\Omega),\end{cases}$$"><mrow><mrow><mo>{</mo><mtable columnalign="left"><mtr><mtd><msub><mi>A</mi><mi>p</mi></msub><mi>u</mi><mo>=</mo><mi>λ</mi><mi>g</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><msup><mrow><mo>|</mo><mi>u</mi><mo>|</mo></mrow><mrow><mi>p</mi><mo>−</mo><mn>2</mn></mrow></msup><mi>u</mi><mo>,</mo></mtd></mtr><mtr><mtd><mi>u</mi><mo>∈</mo><msubsup><mi>W</mi><mn>0</mn><mrow><mn>1</mn><mo>,</mo><mi>p</mi></mrow></msubsup><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow><mo>,</mo></mtd></mtr></mtable></mrow></mrow></math> is a bifurcation point of the problem mentioned above.</p> </abstract> <keywords> <keyword>indefinite</keyword> </keywords> <subjects> <subject scheme = "msc1991" rank = "primary">35B36</subject> <subject scheme = "msc1991" rank = "primary"> 35J34</subject> <subject scheme = "msc1991" rank = "secondary"> 35P34</subject> </subjects> <start_page>155</start_page> <end_page>165</end_page> <record_filename filetype = "pdfview">S1.pdf</record_filename> <record_filename filetype = "tex">S1.ref</record_filename> </record> </issue> </euclid_issue> --------------------------------------------------------------------- JIRA INFORMATION: This message is automatically generated by JIRA. If you think it was sent incorrectly contact one of the administrators: http://issues.apache.org/jira/secure/Administrators.jspa If you want more information on JIRA, or have a bug to report see: http://www.atlassian.com/software/jira --------------------------------------------------------------------- To unsubscribe, e-mail: [EMAIL PROTECTED] For additional commands, e-mail: [EMAIL PROTECTED]