Hi, I realize that there are plenty differences between your script and the example script, depsite your statement that it is similar to the original. Please be more accurate on which change caused the crash, and provide us with a way to pinpoint it (e.g. triggering the crash or not by changing just one line). Bruno
-- You received this bug notification because you are a member of Yade developers, which is subscribed to Yade. https://bugs.launchpad.net/bugs/1663899 Title: SetCohesionNow & setCohesionOnNewContacts /triaxial test Status in Yade: New Bug description: Hello all, can I turn on setCohesionNow, setCohesionOnNewContacts in triaxial test as well? if yes, why I set these parameters the porosity & friction does not change and I face with below error? while without these consideration code works. "Friction: 33.25 porosity: 1.0python: malloc.c:3720: _int_malloc: Assertion `(unsigned long) (size) >= (unsigned long) (nb)' failed. Aborted (core dumped)" the triaxial script is not different from the original one, I just copy it here if you need to know about the inputs. Thanks, Seti from yade import pack,plot ############################################ ### DEFINING VARIABLES AND MATERIALS ### ############################################ # The following 5 lines will be used later for batch execution nRead=readParamsFromTable( num_spheres=1000,# number of spheres compFricDegree =35, # contact friction during the confining phase key='_triax_base_', # put you simulation's name here unknownOk=True ) from yade.params import table num_spheres=table.num_spheres# number of spheres key=table.key targetPorosity = 0.42 #the porosity we want for the packing compFricDegree = table.compFricDegree # initial contact friction during the confining phase (will be decreased during the REFD compaction process) finalFricDegree = 35# contact friction during the deviatoric loading rate=-0.005 # loading rate (strain rate) damp=0.3 # damping coefficient stabilityThreshold=0.01 # we test unbalancedForce against this value in different loops (see below) young=100e6# contact stiffness mn,mx=Vector3(0,0,0),Vector3(0.09,0.18,0.09) # corners of the initial packing ## create materials for spheres and plates O.materials.append(CohFrictMat(alphaKr=0.5,young=young,poisson=0.09,frictionAngle=radians(33.5),normalCohesion=7.5e3,shearCohesion=2.25e3,momentRotationLaw=True,etaRoll=0.001,density=2600,isCohesive=True,label='spheres')) O.materials.append(CohFrictMat(young=young,poisson=0,frictionAngle=radians(0),density=0,label='walls')) ## create walls around the packing walls=aabbWalls([mn,mx],thickness=0,material='walls') wallIds=O.bodies.append(walls) ## use a SpherePack object to generate a random loose particles packing sp=pack.SpherePack() clumps=False #turn this true for the same example with clumps if clumps: ## approximate mean rad of the futur dense packing for latter use volume = (mx[0]-mn[0])*(mx[1]-mn[1])*(mx[2]-mn[2]) mean_rad = pow(0.09*volume/num_spheres,0.3333) ## define a unique clump type (we could have many, see clumpCloud documentation) c1=pack.SpherePack([((-0.2*mean_rad,0,0),0.5*mean_rad),((0.2*mean_rad,0,0),0.5*mean_rad)]) ## generate positions and input them in the simulation sp.makeClumpCloud(mn,mx,[c1],periodic=False) sp.toSimulation(material='spheres') O.bodies.updateClumpProperties()#get more accurate clump masses/volumes/inertia else: sp.makeCloud(mn,mx,-1,0,num_spheres,False, 0.95,seed=1) #"seed" make the "random" generation always the same #sp.makeCloud(mn,mx,0.066,num_spheres) #"seed" make the "random" generation always the same O.bodies.append([sphere(center,rad,material='spheres') for center,rad in sp]) #or alternatively (higher level function doing exactly the same): #sp.toSimulation(material='spheres') ############################ ### DEFINING ENGINES ### ############################ triax=TriaxialStressController( ## TriaxialStressController will be used to control stress and strain. It controls particles size and plates positions. ## this control of boundary conditions was used for instance in http://dx.doi.org/10.1016/j.ijengsci.2008.07.002 maxMultiplier=1.+2e4/young, # spheres growing factor (fast growth) finalMaxMultiplier=1.+2e3/young, # spheres growing factor (slow growth) thickness = 0, ## switch stress/strain control using a bitmask. What is a bitmask, huh?! ## Say x=1 if stess is controlled on x, else x=0. Same for for y and z, which are 1 or 0. ## Then an integer uniquely defining the combination of all these tests is: mask = x*1 + y*2 + z*4 ## to put it differently, the mask is the integer whose binary representation is xyz, i.e. ## "100" (1) means "x", "110" (3) means "x and y", "111" (7) means "x and y and z", etc. stressMask = 7, internalCompaction=True, # If true the confining pressure is generated by growing particles ) newton=NewtonIntegrator(damping=damp) ######################################## #Modified engine ################################## O.engines=[ ForceResetter(), InsertionSortCollider([Bo1_Sphere_Aabb(),Bo1_Box_Aabb()]), InteractionLoop( [Ig2_Sphere_Sphere_ScGeom(),Ig2_Box_Sphere_ScGeom()], [Ip2_FrictMat_FrictMat_FrictPhys (),Ip2_CohFrictMat_CohFrictMat_CohFrictPhys(setCohesionNow = True, setCohesionOnNewContacts = True,label="cohesiveIp")], [Law2_ScGeom_FrictPhys_CundallStrack(),Law2_ScGeom_CohFrictPhys_CohesionMoment( useIncrementalForm=True, #useIncrementalForm is turned on as we want plasticity on the contact moments always_use_moment_law=False, #if we want "rolling" friction even if the contact is not cohesive (or cohesion is broken), we will have to turn this true somewhere label='cohesiveLaw')] ), ## We will use the global stiffness of each body to determine an optimal timestep (see https://yade-dem.org/w/images/1/1b/Chareyre&Villard2005_licensed.pdf) GlobalStiffnessTimeStepper(active=1,timeStepUpdateInterval=100,timestepSafetyCoefficient=0.8), triax, TriaxialStateRecorder(iterPeriod=100,file='150,damp0.8,rate 0.005,NEW50,alphaKr=0.5,young=100e6,poisson=0.09,frictionAngle=radians(50),normalCohesion=7.5e10,shearCohesion=2.25e10,etaRoll=0.025,density=2600,wall35,'+key), newton ] ########################################################## #O.engines=[ #ForceResetter(), #InsertionSortCollider([Bo1_Sphere_Aabb(),Bo1_Box_Aabb()]), #InteractionLoop( #[Ig2_Sphere_Sphere_ScGeom(),Ig2_Box_Sphere_ScGeom()], #[Ip2_FrictMat_FrictMat_FrictPhys()], #[Law2_ScGeom_FrictPhys_CundallStrack()] #), ## We will use the global stiffness of each body to determine an optimal timestep (see https://yade-dem.org/w/images/1/1b/Chareyre&Villard2005_licensed.pdf) #GlobalStiffnessTimeStepper(active=1,timeStepUpdateInterval=100,timestepSafetyCoefficient=0.8), #triax, #TriaxialStateRecorder(iterPeriod=100,file='WallStresses'+table.key), #newton #] ############################# #Display spheres with 2 colors for seeing rotations better Gl1_Sphere.stripes=0 if nRead==0: yade.qt.Controller(), yade.qt.View() ## UNCOMMENT THE FOLLOWING SECTIONS ONE BY ONE ## DEPENDING ON YOUR EDITOR, IT COULD BE DONE ## BY SELECTING THE CODE BLOCKS BETWEEN THE SUBTITLES ## AND PRESSING CTRL+SHIFT+D #if nRead==0: yade.qt.Controller(), yade.qt.View() print 'Number of elements: ', len(O.bodies) print 'Box Volume: ', triax.boxVolume ####################################### ### APPLYING CONFINING PRESSURE ### ####################################### #the value of (isotropic) confining stress defines the target stress to be applied in all three directions triax.goal1=triax.goal2=triax.goal3=-150000 #while 1: #O.run(1000, True) ##the global unbalanced force on dynamic bodies, thus excluding boundaries, which are not at equilibrium #unb=unbalancedForce() #print 'unbalanced force:',unb,' mean stress: ',triax.meanStress #if unb<stabilityThreshold and abs(-10000-triax.meanStress)/10000<0.001: #break #O.save('confinedState'+key+'.yade.gz') #print "### Isotropic state saved ###" ################################################### ### REACHING A SPECIFIED POROSITY PRECISELY ### ################################################### ### We will reach a prescribed value of porosity with the REFD algorithm ### (see http://dx.doi.org/10.2516/ogst/2012032 and ### http://www.geosyntheticssociety.org/Resources/Archive/GI/src/V9I2/GI-V9-N2-Paper1.pdf) import sys #this is only for the flush() below while triax.porosity>targetPorosity: ## we decrease friction value and apply it to all the bodies and contacts compFricDegree = 0.95*compFricDegree setContactFriction(radians(compFricDegree)) print "\r Friction: ",compFricDegree," porosity:",triax.porosity, sys.stdout.flush() ## while we run steps, triax will tend to grow particles as the packing ## keeps shrinking as a consequence of decreasing friction. Consequently ## porosity will decrease O.run(500,1) O.save('compactedStateBEL20,young=63.9e8'+key+'.yade.gz') print "### Compacted state saved ###" ############################## ### DEVIATORIC LOADING ### ############################## ##We move to deviatoric loading, let us turn internal compaction off to keep particles sizes constant triax.internalCompaction=False ## Change contact friction (remember that decreasing it would generate instantaneous instabilities) setContactFriction(radians(finalFricDegree)) ##set stress control on x and z, we will impose strain rate on y triax.stressMask = 5 ##now goal2 is the target strain rate triax.goal2=rate ## we define the lateral stresses during the test, here the same 10kPa as for the initial confinement. triax.goal1=-150000 triax.goal3=-150000 ##we can change damping here. What is the effect in your opinion? newton.damping=0.1 To manage notifications about this bug go to: https://bugs.launchpad.net/yade/+bug/1663899/+subscriptions _______________________________________________ Mailing list: https://launchpad.net/~yade-dev Post to : yade-dev@lists.launchpad.net Unsubscribe : https://launchpad.net/~yade-dev More help : https://help.launchpad.net/ListHelp