Anonymous wrote (responding to the idea of "perfect compression"):
> ... Once you have specified
> such a probability distribution, you can evaluate how well a particular
> compression algorithm works.  But speaking of absolute compression or
> absolute entropy is meaningless.

These ideas have on a Turing machine the same meaning as the idea of 
"truly random numbers", and for the same reason.  The assumption of 
randomness used in proving that OTPs and other protocols are 
"unconditionally" secure is very similar to the assumption that a string 
is "perfectly compressed".  The problem is that determining the absolute 
entropy of a string, as well as the equivalent problem of determining 
whether it is "real random", is both uncomputable and language-dependent.  

Empirically, it seems likely that generating truly random numbers is much
more practical than perfect compression.  If one has access to certain 
well-observed physical phenomena, one can make highly confident, if 
still mathematically unproven, assumptions of "true randomness", but 
said phenomena don't help with perfect compression.  

If we restrict ourselves to Turing machines, we can do something *close*
to perfect compression and tests of true randomness -- but not quite.
And *very* slow.  From a better physical source there is still the problem 
that if we can't sufficiently test them, how can we be so confident 
they are random anyway?  Such assumptions are based on the extensive and
various, but imperfect, statistical tests physicists have done (has 
anybody tried cryptanalyzing radioactive decay?  :-)

We can come close to testing for true randomness and and doing perfect
compression on a Turing machine.   For example, here is an algorithm that,
for sufficiently long but finite number of steps t, will *probably* give you
the perfect compression (I believe the probability converges on 
a number related to Chaitin's "Omega" halting probability as t grows,
but don't quote me -- this would make an interesting research topic).

probably_perfect_compress(data,t) {
for all binary programs smaller than data {
        run program until it halts or it has run for time t
        if (output of program == data AND
                length(program) < length(shortest_program)) {
                shortest_program = program
        }
}
print "the data: ", data
print "the (probably) perfect compression of the data", shortest_program
return shortest_program
}

(We have to makes some reasonable assumption about what the binary
programming language is -- see below).

We can then use our probably-perfect compression algorithm as a statstical
test of randomness as follows:

probably_random_test(data,t) {
        if length(probably_perfect_compress(data,t)) = length(data)
        then print "data is probably random"
        else print "pattern found, data is not random"
}

We can't *prove* that we've found the perfect compression.  However,
I bet we can get a good idea of the *probability* that we've found the
perfect compression by examining this algorithm in terms
of the algorithmic probability of the data and Chaitin's halting 
probability.

Nor is the above algorithm efficient.   Similarly, you can't prove
that you've found truly random numbers, nor is it efficient to
generate such numbers on a Turing machine.  (Pseudorandom
numbers are another story, and numbers derived from non-Turing
physical sources are another story).          

We could generate (non-cryptographic) probably-random numbers as follows:

probably_random_generate(seed,t) {
        return probably_perfect_compress(seed,t)
}

For cryptographic applications there are two important ideas, 
one-wayness and expanding rather than contracting the seed, that 
are not captured here.  Probably_random_generate is more like the idea 
of hashing an imperfect entropy source to get the "core" entropy
one believes exists in it.  Only probably_random_generate is far more reliable,
as one can actually formally analyze the probability of having generated
truly random numbers.   It is, alas, much slower than hashing. :-(

Back to the theoretical point about whether there is such a thing
as "absolute" entropy or compression.  The Kolmogorov complexity 
(the smallest program that, when run, produce the decompressed data) 
is clearly defined and fully general for Turing machines.  If we could 
determine the Kolmogorov complexity we wouldn't need to invoke any 
probability distribution to determine the absolute minimum possible 
entropy of any data to be compressed on a Turning machine.

It is, alas, uncomputable.  To find the Kolmogorov complexity we could 
simply search through the space of all programs smaller than the data.
But due to the halting problem we cannot always be certain that there 
does not exist a smaller program that, run for a sufficiently long period 
of time, will produce the decompressed data.  When we can't prove that 
there is no smaller program than the data which generates the data, 
we also can't prove that there is not a pattern hidden in the data which 
makes it less than "truly random".  The finite version of this search
process, in the program probably_perfect_compression, circumvents 
the halting problem by arbitrarily halting programs that have already 
run for t steps.

Also, since the length of the program depends on what language it's
written in, absolute Kolmogorov complexity is good only for 
analyzing growth rates.  The choice of language adds a constant 
length to the program.  We'd have to look at probably_perfect_compression
in this context to see if the choice of binary language is a
reasonable one or if other languages would give better compressions
on the data we are likely to encounter.

One consequence is that OTPs themselves have a big problem when we
assume "truly random" numbers.  This assumption is, in terms of
the provability of security, no weaker or stronger than than 
an assumption of "perfect compression".   (Which assumption is
more practical is a different question -- as per above, if one has 
access to certain well-observed physical phenomena, one can make 
highly confident, if still mathematically unproven, assumptions of 
"true randomness", but said phenomena don't help with perfect 
compression).

For more on this topic see http://www.best.com/~szabo/kolmogorov.html and 
the references therein. 



Reply via email to