GHC accepts this with -fglasgow-exts
instance (Ord a, Bits a, Bounded a, Integral a, LargeWord a, Bits b, Bounded b, Integral b, LargeWord b) => Bounded (LargeKey a b) where minBound = 0 maxBound = fromIntegral $ (1 + fromIntegral (maxBound::b))* (1 + fromIntegral (maxBound::a)) - 1
Hugs rejects it with +N -98 with
ERROR "Codec/Encryption/LargeKey.hs":94 - Cannot justify constraints in type annotation
*** Expression : maxBound
*** Type : b
*** Given context : ()
*** Constraints : Bounded b
Since I've already declared b to be Bounded, it looks like a bug in Hugs.
Dominic.
=======================================================================
module Codec.Encryption.LargeKey (Word128,Word192,Word256,LargeWord) where
import Data.Word import Data.Bits import Numeric import Char
-- Keys have certain capabilities.
class LargeWord a where largeWordToInteger :: a -> Integer integerToLargeWord :: Integer -> a largeWordPlus :: a -> a -> a largeWordAnd :: a -> a -> a largeWordOr :: a -> a -> a largeWordShift :: a -> Int -> a largeWordXor :: a -> a -> a largeBitSize :: a -> Int
-- Word64 is a key in the obvious way.
instance LargeWord Word64 where largeWordToInteger = toInteger integerToLargeWord = fromInteger largeWordPlus = (+) largeWordAnd = (.&.) largeWordOr = (.|.) largeWordShift = shift largeWordXor = xor largeBitSize = bitSize
-- Define larger keys from smaller ones.
data LargeKey a b = LargeKey a b deriving (Eq, Ord)
instance (Ord a, Bits a, LargeWord a, Bits b, LargeWord b) =>
LargeWord (LargeKey a b) where
largeWordToInteger (LargeKey lo hi) =
largeWordToInteger lo + (2^(bitSize lo)) * largeWordToInteger hi
integerToLargeWord x =
let (h,l) = x `quotRem` (2^(bitSize lo))
(lo,hi) = (integerToLargeWord l, integerToLargeWord h) in
LargeKey lo hi
largeWordPlus (LargeKey alo ahi) (LargeKey blo bhi) =
LargeKey lo' hi' where
lo' = alo + blo
hi' = ahi + bhi + if lo' < alo then 1 else 0
largeWordAnd (LargeKey alo ahi) (LargeKey blo bhi) =
LargeKey lo' hi' where
lo' = alo .&. blo
hi' = ahi .&. bhi
largeWordOr (LargeKey alo ahi) (LargeKey blo bhi) =
LargeKey lo' hi' where
lo' = alo .|. blo
hi' = ahi .|. bhi
largeWordOr (LargeKey alo ahi) (LargeKey blo bhi) =
LargeKey lo' hi' where
lo' = alo .|. blo
hi' = ahi .|. bhi
largeWordXor (LargeKey alo ahi) (LargeKey blo bhi) =
LargeKey lo' hi' where
lo' = alo `xor` blo
hi' = ahi `xor` bhi
largeWordShift w 0 = w
largeWordShift (LargeKey lo hi) x =
if bitSize lo < bitSize hi
then LargeKey (shift lo x)
(shift hi x .|. (shift (conv lo) (x - (bitSize lo))))
else LargeKey (shift lo x)
(shift hi x .|. (conv $ shift lo (x - (bitSize lo))))
where conv = integerToLargeWord . largeWordToInteger
largeBitSize ~(LargeKey lo hi) = largeBitSize lo + largeBitSize hi
instance (Ord a, Bits a, LargeWord a, Bits b, LargeWord b) => Show (LargeKey a b) where
showsPrec p = showInt . largeWordToInteger
instance (Ord a, Bits a, LargeWord a, Bits b, LargeWord b) => Num (LargeKey a b) where (+) = largeWordPlus fromInteger = integerToLargeWord
-- Larger keys are instances of Bits provided their constituents are keys.
instance (Ord a, Bits a, LargeWord a, Bits b, LargeWord b) => Bits (LargeKey a b) where (.&.) = largeWordAnd (.|.) = largeWordOr xor = largeWordXor shift = largeWordShift bitSize = largeBitSize
instance (Ord a, Bits a, Bounded a, Integral a, LargeWord a, Bits b, Bounded b, Integral b, LargeWord b) => Bounded (LargeKey a b) where minBound = 0 maxBound = fromIntegral $ (1 + fromIntegral (maxBound::b))* (1 + fromIntegral (maxBound::a)) - 1
instance (Ord a, Bits a, LargeWord a, Ord b, Bits b, LargeWord b) => Integral (LargeKey a b) where toInteger = largeWordToInteger
instance (Ord a, Bits a, LargeWord a, Ord b, Bits b, LargeWord b) => Real (LargeKey a b)
instance Enum (LargeKey a b)
type Word96 = LargeKey Word32 Word64 type Word128 = LargeKey Word64 Word64 type Word160 = LargeKey Word32 Word128 type Word192 = LargeKey Word64 Word128 type Word224 = LargeKey Word32 Word192 type Word256 = LargeKey Word64 Word192 _______________________________________________ Haskell mailing list [EMAIL PROTECTED] http://www.haskell.org/mailman/listinfo/haskell