Hi Eric,

On 31 August 2018 at 10:01, Eric Biggers <ebigg...@kernel.org> wrote:
> From: Eric Biggers <ebigg...@google.com>
>
> Optimize ChaCha20 NEON performance by:
>
> - Implementing the 8-bit rotations using the 'vtbl.8' instruction.
> - Streamlining the part that adds the original state and XORs the data.
> - Making some other small tweaks.
>
> On ARM Cortex-A7, these optimizations improve ChaCha20 performance from
> about 11.9 cycles per byte to 11.3.
>
> There is a tradeoff involved with the 'vtbl.8' rotation method since
> there is at least one CPU where it's not fastest.  But it seems to be a
> better default; see the added comment.
>
> Signed-off-by: Eric Biggers <ebigg...@google.com>
> ---
>  arch/arm/crypto/chacha20-neon-core.S | 289 ++++++++++++++-------------
>  1 file changed, 147 insertions(+), 142 deletions(-)
>
> diff --git a/arch/arm/crypto/chacha20-neon-core.S 
> b/arch/arm/crypto/chacha20-neon-core.S
> index 3fecb2124c35a..d381cebaba31d 100644
> --- a/arch/arm/crypto/chacha20-neon-core.S
> +++ b/arch/arm/crypto/chacha20-neon-core.S
> @@ -18,6 +18,33 @@
>   * (at your option) any later version.
>   */
>
> + /*
> +  * NEON doesn't have a rotate instruction.  The alternatives are, more or 
> less:
> +  *
> +  * (a)  vshl.u32 + vsri.u32           (needs temporary register)
> +  * (b)  vshl.u32 + vshr.u32 + vorr    (needs temporary register)
> +  * (c)  vrev32.16                     (16-bit rotations only)
> +  * (d)  vtbl.8 + vtbl.8               (multiple of 8 bits rotations only,
> +  *                                     needs index vector)
> +  *
> +  * ChaCha20 has 16, 12, 8, and 7-bit rotations.  For the 12 and 7-bit
> +  * rotations, the only choices are (a) and (b).  We use (a) since it takes
> +  * two-thirds the cycles of (b) on both Cortex-A7 and Cortex-A53.
> +  *
> +  * For the 16-bit rotation, we use vrev32.16 since it's consistently fastest
> +  * and doesn't need a temporary register.
> +  *
> +  * For the 8-bit rotation, we use vtbl.8 + vtbl.8.  On Cortex-A7, this 
> sequence
> +  * is twice as fast as (a), even when doing (a) on multiple registers
> +  * simultaneously to eliminate the stall between vshl and vsri.  Also, it
> +  * parallelizes better when temporary registers are scarce.
> +  *
> +  * A disadvantage is that on Cortex-A53, the vtbl sequence is the same 
> speed as
> +  * (a), so the need to load the rotation table actually makes the vtbl 
> method
> +  * slightly slower overall on that CPU.  Still, it seems to be a good
> +  * compromise to get a significant speed boost on some CPUs.
> +  */
> +

Thanks for sharing these results. I have been working on 32-bit ARM
code under the assumption that the A53 pipeline more or less resembles
the A7 one, but this is obviously not the case looking at your
results. My contributions to arch/arm/crypto mainly involved Crypto
Extensions code, which the A7 does not support in the first place, so
it does not really matter, but I will keep this in mind going forward.

>  #include <linux/linkage.h>
>
>         .text
> @@ -46,6 +73,9 @@ ENTRY(chacha20_block_xor_neon)
>         vmov            q10, q2
>         vmov            q11, q3
>
> +       ldr             ip, =.Lrol8_table
> +       vld1.8          {d10}, [ip, :64]
> +

I usually try to avoid the =literal ldr notation, because it involves
an additional load via the D-cache. Could you use a 64-bit literal
instead of a byte array and use vldr instead? Or switch to adr? (and
move the literal in range, I suppose)

>         mov             r3, #10
>
>  .Ldoubleround:
> @@ -63,9 +93,9 @@ ENTRY(chacha20_block_xor_neon)
>
>         // x0 += x1, x3 = rotl32(x3 ^ x0, 8)
>         vadd.i32        q0, q0, q1
> -       veor            q4, q3, q0
> -       vshl.u32        q3, q4, #8
> -       vsri.u32        q3, q4, #24
> +       veor            q3, q3, q0
> +       vtbl.8          d6, {d6}, d10
> +       vtbl.8          d7, {d7}, d10
>
>         // x2 += x3, x1 = rotl32(x1 ^ x2, 7)
>         vadd.i32        q2, q2, q3
> @@ -94,9 +124,9 @@ ENTRY(chacha20_block_xor_neon)
>
>         // x0 += x1, x3 = rotl32(x3 ^ x0, 8)
>         vadd.i32        q0, q0, q1
> -       veor            q4, q3, q0
> -       vshl.u32        q3, q4, #8
> -       vsri.u32        q3, q4, #24
> +       veor            q3, q3, q0
> +       vtbl.8          d6, {d6}, d10
> +       vtbl.8          d7, {d7}, d10
>
>         // x2 += x3, x1 = rotl32(x1 ^ x2, 7)
>         vadd.i32        q2, q2, q3
> @@ -143,11 +173,11 @@ ENDPROC(chacha20_block_xor_neon)
>
>         .align          5
>  ENTRY(chacha20_4block_xor_neon)
> -       push            {r4-r6, lr}
> -       mov             ip, sp                  // preserve the stack pointer
> -       sub             r3, sp, #0x20           // allocate a 32 byte buffer
> -       bic             r3, r3, #0x1f           // aligned to 32 bytes
> -       mov             sp, r3
> +       push            {r4}

The ARM EABI mandates 8 byte stack alignment, and if you take an
interrupt right at this point, you will enter the interrupt handler
with a misaligned stack. Whether this could actually cause any
problems is a different question, but it is better to keep it 8-byte
aligned to be sure.

I'd suggest you just push r4 and lr, so you can return from the
function by popping r4 and pc, as is customary on ARM.

> +       mov             r4, sp                  // preserve the stack pointer
> +       sub             ip, sp, #0x20           // allocate a 32 byte buffer
> +       bic             ip, ip, #0x1f           // aligned to 32 bytes
> +       mov             sp, ip
>

Is there a reason for preferring ip over r3 for preserving the
original value of sp?

>         // r0: Input state matrix, s
>         // r1: 4 data blocks output, o
> @@ -157,25 +187,24 @@ ENTRY(chacha20_4block_xor_neon)
>         // This function encrypts four consecutive ChaCha20 blocks by loading
>         // the state matrix in NEON registers four times. The algorithm 
> performs
>         // each operation on the corresponding word of each state matrix, 
> hence
> -       // requires no word shuffling. For final XORing step we transpose the
> -       // matrix by interleaving 32- and then 64-bit words, which allows us 
> to
> -       // do XOR in NEON registers.
> +       // requires no word shuffling. The words are re-interleaved before the
> +       // final addition of the original state and the XORing step.
>         //
>
> -       // x0..15[0-3] = s0..3[0..3]
> -       add             r3, r0, #0x20
> +       // x0..15[0-3] = s0..15[0-3]
> +       add             ip, r0, #0x20
>         vld1.32         {q0-q1}, [r0]
> -       vld1.32         {q2-q3}, [r3]
> +       vld1.32         {q2-q3}, [ip]
>
> -       adr             r3, CTRINC
> +       adr             ip, .Lctrinc1
>         vdup.32         q15, d7[1]
>         vdup.32         q14, d7[0]
> -       vld1.32         {q11}, [r3, :128]
> +       vld1.32         {q4}, [ip, :128]
>         vdup.32         q13, d6[1]
>         vdup.32         q12, d6[0]
> -       vadd.i32        q12, q12, q11           // x12 += counter values 0-3
>         vdup.32         q11, d5[1]
>         vdup.32         q10, d5[0]
> +       vadd.u32        q12, q12, q4            // x12 += counter values 0-3
>         vdup.32         q9, d4[1]
>         vdup.32         q8, d4[0]
>         vdup.32         q7, d3[1]
> @@ -187,6 +216,7 @@ ENTRY(chacha20_4block_xor_neon)
>         vdup.32         q1, d0[1]
>         vdup.32         q0, d0[0]
>
> +       adr             ip, .Lrol8_table
>         mov             r3, #10
>
>  .Ldoubleround4:
> @@ -238,24 +268,25 @@ ENTRY(chacha20_4block_xor_neon)
>         // x1 += x5, x13 = rotl32(x13 ^ x1, 8)
>         // x2 += x6, x14 = rotl32(x14 ^ x2, 8)
>         // x3 += x7, x15 = rotl32(x15 ^ x3, 8)
> +       vld1.8          {d16}, [ip, :64]
>         vadd.i32        q0, q0, q4
>         vadd.i32        q1, q1, q5
>         vadd.i32        q2, q2, q6
>         vadd.i32        q3, q3, q7
>
> -       veor            q8, q12, q0
> -       veor            q9, q13, q1
> -       vshl.u32        q12, q8, #8
> -       vshl.u32        q13, q9, #8
> -       vsri.u32        q12, q8, #24
> -       vsri.u32        q13, q9, #24
> +       veor            q12, q12, q0
> +       veor            q13, q13, q1
> +       veor            q14, q14, q2
> +       veor            q15, q15, q3
>
> -       veor            q8, q14, q2
> -       veor            q9, q15, q3
> -       vshl.u32        q14, q8, #8
> -       vshl.u32        q15, q9, #8
> -       vsri.u32        q14, q8, #24
> -       vsri.u32        q15, q9, #24
> +       vtbl.8          d24, {d24}, d16
> +       vtbl.8          d25, {d25}, d16
> +       vtbl.8          d26, {d26}, d16
> +       vtbl.8          d27, {d27}, d16
> +       vtbl.8          d28, {d28}, d16
> +       vtbl.8          d29, {d29}, d16
> +       vtbl.8          d30, {d30}, d16
> +       vtbl.8          d31, {d31}, d16
>
>         vld1.32         {q8-q9}, [sp, :256]
>
> @@ -334,24 +365,25 @@ ENTRY(chacha20_4block_xor_neon)
>         // x1 += x6, x12 = rotl32(x12 ^ x1, 8)
>         // x2 += x7, x13 = rotl32(x13 ^ x2, 8)
>         // x3 += x4, x14 = rotl32(x14 ^ x3, 8)
> +       vld1.8          {d16}, [ip, :64]
>         vadd.i32        q0, q0, q5
>         vadd.i32        q1, q1, q6
>         vadd.i32        q2, q2, q7
>         vadd.i32        q3, q3, q4
>
> -       veor            q8, q15, q0
> -       veor            q9, q12, q1
> -       vshl.u32        q15, q8, #8
> -       vshl.u32        q12, q9, #8
> -       vsri.u32        q15, q8, #24
> -       vsri.u32        q12, q9, #24
> +       veor            q15, q15, q0
> +       veor            q12, q12, q1
> +       veor            q13, q13, q2
> +       veor            q14, q14, q3
>
> -       veor            q8, q13, q2
> -       veor            q9, q14, q3
> -       vshl.u32        q13, q8, #8
> -       vshl.u32        q14, q9, #8
> -       vsri.u32        q13, q8, #24
> -       vsri.u32        q14, q9, #24
> +       vtbl.8          d30, {d30}, d16
> +       vtbl.8          d31, {d31}, d16
> +       vtbl.8          d24, {d24}, d16
> +       vtbl.8          d25, {d25}, d16
> +       vtbl.8          d26, {d26}, d16
> +       vtbl.8          d27, {d27}, d16
> +       vtbl.8          d28, {d28}, d16
> +       vtbl.8          d29, {d29}, d16
>
>         vld1.32         {q8-q9}, [sp, :256]
>
> @@ -381,104 +413,74 @@ ENTRY(chacha20_4block_xor_neon)
>         vsri.u32        q6, q9, #25
>
>         subs            r3, r3, #1
> -       beq             0f
> -
> -       vld1.32         {q8-q9}, [sp, :256]
> -       b               .Ldoubleround4
> -
> -       // x0[0-3] += s0[0]
> -       // x1[0-3] += s0[1]
> -       // x2[0-3] += s0[2]
> -       // x3[0-3] += s0[3]
> -0:     ldmia           r0!, {r3-r6}
> -       vdup.32         q8, r3
> -       vdup.32         q9, r4
> -       vadd.i32        q0, q0, q8
> -       vadd.i32        q1, q1, q9
> -       vdup.32         q8, r5
> -       vdup.32         q9, r6
> -       vadd.i32        q2, q2, q8
> -       vadd.i32        q3, q3, q9
> -
> -       // x4[0-3] += s1[0]
> -       // x5[0-3] += s1[1]
> -       // x6[0-3] += s1[2]
> -       // x7[0-3] += s1[3]
> -       ldmia           r0!, {r3-r6}
> -       vdup.32         q8, r3
> -       vdup.32         q9, r4
> -       vadd.i32        q4, q4, q8
> -       vadd.i32        q5, q5, q9
> -       vdup.32         q8, r5
> -       vdup.32         q9, r6
> -       vadd.i32        q6, q6, q8
> -       vadd.i32        q7, q7, q9
> -
> -       // interleave 32-bit words in state n, n+1
> -       vzip.32         q0, q1
> -       vzip.32         q2, q3
> -       vzip.32         q4, q5
> -       vzip.32         q6, q7
> -
> -       // interleave 64-bit words in state n, n+2
> -       vswp            d1, d4
> -       vswp            d3, d6
> -       vswp            d9, d12
> -       vswp            d11, d14
> -
> -       // xor with corresponding input, write to output
> -       vld1.8          {q8-q9}, [r2]!
> -       veor            q8, q8, q0
> -       veor            q9, q9, q4
> -       vst1.8          {q8-q9}, [r1]!
> -
>         vld1.32         {q8-q9}, [sp, :256]
> -
> -       // x8[0-3] += s2[0]
> -       // x9[0-3] += s2[1]
> -       // x10[0-3] += s2[2]
> -       // x11[0-3] += s2[3]
> -       ldmia           r0!, {r3-r6}
> -       vdup.32         q0, r3
> -       vdup.32         q4, r4
> -       vadd.i32        q8, q8, q0
> -       vadd.i32        q9, q9, q4
> -       vdup.32         q0, r5
> -       vdup.32         q4, r6
> -       vadd.i32        q10, q10, q0
> -       vadd.i32        q11, q11, q4
> -
> -       // x12[0-3] += s3[0]
> -       // x13[0-3] += s3[1]
> -       // x14[0-3] += s3[2]
> -       // x15[0-3] += s3[3]
> -       ldmia           r0!, {r3-r6}
> -       vdup.32         q0, r3
> -       vdup.32         q4, r4
> -       adr             r3, CTRINC
> -       vadd.i32        q12, q12, q0
> -       vld1.32         {q0}, [r3, :128]
> -       vadd.i32        q13, q13, q4
> -       vadd.i32        q12, q12, q0            // x12 += counter values 0-3
> -
> -       vdup.32         q0, r5
> -       vdup.32         q4, r6
> -       vadd.i32        q14, q14, q0
> -       vadd.i32        q15, q15, q4
> -
> -       // interleave 32-bit words in state n, n+1
> -       vzip.32         q8, q9
> -       vzip.32         q10, q11
> -       vzip.32         q12, q13
> -       vzip.32         q14, q15
> -
> -       // interleave 64-bit words in state n, n+2
> -       vswp            d17, d20
> -       vswp            d19, d22
> -       vswp            d25, d28
> +       bne             .Ldoubleround4
> +
> +       // re-interleave the 32-bit words of the four blocks
> +       vzip.32         q14, q15        // => (14 15 14 15) (14 15 14 15)
> +       vzip.32         q12, q13        // => (12 13 12 13) (12 13 12 13)
> +       vzip.32         q10, q11        // => (10 11 10 11) (10 11 10 11)
> +       vzip.32         q8, q9          // => (8 9 8 9) (8 9 8 9)
> +       vzip.32         q6, q7          // => (6 7 6 7) (6 7 6 7)
> +       vzip.32         q4, q5          // => (4 5 4 5) (4 5 4 5)
> +       vzip.32         q2, q3          // => (2 3 2 3) (2 3 2 3)
> +       vzip.32         q0, q1          // => (0 1 0 1) (0 1 0 1)
>         vswp            d27, d30
> +       vswp            d25, d28
> +       vswp            d19, d22
> +       vswp            d17, d20
> +       vswp            d11, d14
> +         vst1.32       {q14-q15}, [sp, :256]   // free up two registers
> +       vswp            d9, d12
> +       vswp            d3, d6
> +         vld1.32       {q14-q15}, [r0]!        // load s0..7
> +       vswp            d1, d4
>
> -       vmov            q4, q1
> +       // Swap q1 and q4 so that we'll free up consecutive registers (q0-q1)
> +       // after XORing the first 32 bytes.
> +       vswp            q1, q4
> +
> +       // blocks are: (q0 q1 q8 q12) (q2 q6 q10 q14) (q4 q5 q9 q13) (q3 q7 
> q11 q15)
> +
> +       // x0..3[0-3] += s0..3[0-3]     (add orig state to 1st row of each 
> block)
> +       vadd.u32        q0, q0, q14
> +       vadd.u32        q2, q2, q14
> +       vadd.u32        q4, q4, q14
> +       vadd.u32        q3, q3, q14
> +
> +       // x4..7[0-3] += s4..7[0-3]     (add orig state to 2nd row of each 
> block)
> +       vadd.u32        q1, q1, q15
> +       vadd.u32        q6, q6, q15
> +       vadd.u32        q5, q5, q15
> +       vadd.u32        q7, q7, q15
> +
> +       // XOR first 32 bytes using keystream from first two rows of first 
> block
> +       vld1.8          {q14-q15}, [r2]!
> +       veor            q14, q14, q0
> +       veor            q15, q15, q1
> +         vld1.32       {q0-q1}, [r0]           // load s8..s15
> +       vst1.8          {q14-q15}, [r1]!
> +
> +       // x8..11[0-3] += s8..11[0-3]   (add orig state to 3rd row of each 
> block)
> +       vadd.u32        q8,  q8,  q0
> +       vadd.u32        q10, q10, q0
> +         vld1.32       {q14-q15}, [sp, :256]
> +       vadd.u32        q9,  q9,  q0
> +         adr           ip, .Lctrinc2
> +       vadd.u32        q11, q11, q0
> +
> +       // x12..15[0-3] += s12..15[0-3] (add orig state to 4th row of each 
> block)
> +       vld1.32         {q0}, [ip, :128]        // load (1, 0, 2, 0)

Would something like

        vmov.i32        d0, #1
        vmovl.u32       q0, d0
        vadd.u64        d1, d1

(untested) work as well?

> +       vadd.u32        q15, q15, q1
> +       vadd.u32        q13, q13, q1
> +       vadd.u32        q14, q14, q1
> +       vadd.u32        q12, q12, q1
> +       vadd.u32        d30, d30, d1            // x12[3] += 2
> +       vadd.u32        d26, d26, d1            // x12[2] += 2
> +       vadd.u32        d28, d28, d0            // x12[1] += 1
> +       vadd.u32        d30, d30, d0            // x12[3] += 1
> +
> +       // XOR the rest of the data with the keystream
>
>         vld1.8          {q0-q1}, [r2]!
>         veor            q0, q0, q8
> @@ -511,13 +513,16 @@ ENTRY(chacha20_4block_xor_neon)
>         vst1.8          {q0-q1}, [r1]!
>
>         vld1.8          {q0-q1}, [r2]
> +         mov           sp, r4          // restore original stack pointer
>         veor            q0, q0, q11
>         veor            q1, q1, q15
>         vst1.8          {q0-q1}, [r1]
>
> -       mov             sp, ip
> -       pop             {r4-r6, pc}
> +       pop             {r4}
> +       bx              lr
>  ENDPROC(chacha20_4block_xor_neon)
>
>         .align          4
> -CTRINC:        .word           0, 1, 2, 3
> +.Lctrinc1:     .word   0, 1, 2, 3
> +.Lctrinc2:     .word   1, 0, 2, 0
> +.Lrol8_table:  .byte   3, 0, 1, 2, 7, 4, 5, 6
> --
> 2.18.0
>

Reply via email to