Revision: 4040
          http://matplotlib.svn.sourceforge.net/matplotlib/?rev=4040&view=rev
Author:   jdh2358
Date:     2007-10-28 09:35:18 -0700 (Sun, 28 Oct 2007)

Log Message:
-----------
fixed some bugs in convolve

Modified Paths:
--------------
    trunk/py4science/examples/skel/convolution_demo_skel.py
    trunk/py4science/workbook/convolution.tex
    trunk/py4science/workbook/intro_sigproc.tex

Modified: trunk/py4science/examples/skel/convolution_demo_skel.py
===================================================================
--- trunk/py4science/examples/skel/convolution_demo_skel.py     2007-10-28 
15:18:02 UTC (rev 4039)
+++ trunk/py4science/examples/skel/convolution_demo_skel.py     2007-10-28 
16:35:18 UTC (rev 4040)
@@ -40,7 +40,7 @@
 # evaluate the impulse response function, and numerically convolve it
 # with the input x
 r = XXX # evaluate the impulse function
-y = XXX # convultion of x with r
+y = XXX # convolution of x with r
 y = XXX # extract just the length Nt part
 
 # compute y by applying F^-1[F(x) * F(r)].  The fft assumes the signal

Modified: trunk/py4science/workbook/convolution.tex
===================================================================
--- trunk/py4science/workbook/convolution.tex   2007-10-28 15:18:02 UTC (rev 
4039)
+++ trunk/py4science/workbook/convolution.tex   2007-10-28 16:35:18 UTC (rev 
4040)
@@ -3,9 +3,9 @@
 
 The output of a linear system is given by the convolution of its
 impulse response function with the input.  Mathematically
-\[
+\begin{equation}
   y(t) = \int_0^t x(\tau)r(t-\tau)d\tau
-\]
+\end{equation}
 This fundamental relationship lies at the heart of linear systems
 analysis.  It is used to model the dynamics of calcium buffers in
 neuronal synapses, where incoming action potentials are represented as

Modified: trunk/py4science/workbook/intro_sigproc.tex
===================================================================
--- trunk/py4science/workbook/intro_sigproc.tex 2007-10-28 15:18:02 UTC (rev 
4039)
+++ trunk/py4science/workbook/intro_sigproc.tex 2007-10-28 16:35:18 UTC (rev 
4040)
@@ -12,4 +12,4 @@
 analyses, such as historgrams (\texttt{hist}), auto and cross
 correlations (\texttt{acorr} and \texttt{xcorr}), power spectra and
 coherence spectra (\texttt{psd}, \texttt{csd}, \texttt{cohere} and
-\texttt{specgram}.  
+\texttt{specgram}).  


This was sent by the SourceForge.net collaborative development platform, the 
world's largest Open Source development site.

-------------------------------------------------------------------------
This SF.net email is sponsored by: Splunk Inc.
Still grepping through log files to find problems?  Stop.
Now Search log events and configuration files using AJAX and a browser.
Download your FREE copy of Splunk now >> http://get.splunk.com/
_______________________________________________
Matplotlib-checkins mailing list
[email protected]
https://lists.sourceforge.net/lists/listinfo/matplotlib-checkins

Reply via email to