Revision: 6117
http://matplotlib.svn.sourceforge.net/matplotlib/?rev=6117&view=rev
Author: jdh2358
Date: 2008-09-23 18:25:27 +0000 (Tue, 23 Sep 2008)
Log Message:
-----------
fixed numerical methods imports -> mlab
Modified Paths:
--------------
trunk/matplotlib/lib/matplotlib/contour.py
trunk/matplotlib/lib/matplotlib/pylab.py
Modified: trunk/matplotlib/lib/matplotlib/contour.py
===================================================================
--- trunk/matplotlib/lib/matplotlib/contour.py 2008-09-23 18:22:54 UTC (rev
6116)
+++ trunk/matplotlib/lib/matplotlib/contour.py 2008-09-23 18:25:27 UTC (rev
6117)
@@ -16,7 +16,7 @@
import matplotlib.font_manager as font_manager
import matplotlib.text as text
import matplotlib.cbook as cbook
-import matplotlib.numerical_methods as numerical_methods
+import matplotlib.mlab as mlab
# Import needed for adding manual selection capability to clabel
from matplotlib.blocking_input import BlockingContourLabeler
@@ -335,7 +335,7 @@
not empty (lc defaults to the empty list if None). *spacing*
is the space around the label in pixels to leave empty.
- Do both of these tasks at once to avoid calling
numerical_methods.path_length
+ Do both of these tasks at once to avoid calling mlab.path_length
multiple times, which is relatively costly.
The method used here involves calculating the path length
@@ -349,7 +349,7 @@
hlw = lw/2.0
# Check if closed and, if so, rotate contour so label is at edge
- closed = numerical_methods.is_closed_polygon(slc)
+ closed = mlab.is_closed_polygon(slc)
if closed:
slc = np.r_[ slc[ind:-1], slc[:ind+1] ]
@@ -359,7 +359,7 @@
ind = 0
# Path length in pixel space
- pl = numerical_methods.path_length(slc)
+ pl = mlab.path_length(slc)
pl = pl-pl[ind]
# Use linear interpolation to get points around label
@@ -369,7 +369,7 @@
else:
dp = np.zeros_like(xi)
- ll = numerical_methods.less_simple_linear_interpolation( pl, slc,
dp+xi,
+ ll = mlab.less_simple_linear_interpolation( pl, slc, dp+xi,
extrap=True )
# get vector in pixel space coordinates from one point to other
@@ -395,16 +395,16 @@
xi = dp + xi + np.array([-spacing,spacing])
# Get indices near points of interest
- I = numerical_methods.less_simple_linear_interpolation(
+ I = mlab.less_simple_linear_interpolation(
pl, np.arange(len(pl)), xi, extrap=False )
# If those indices aren't beyond contour edge, find x,y
if (not np.isnan(I[0])) and int(I[0])<>I[0]:
- xy1 = numerical_methods.less_simple_linear_interpolation(
+ xy1 = mlab.less_simple_linear_interpolation(
pl, lc, [ xi[0] ] )
if (not np.isnan(I[1])) and int(I[1])<>I[1]:
- xy2 = numerical_methods.less_simple_linear_interpolation(
+ xy2 = mlab.less_simple_linear_interpolation(
pl, lc, [ xi[1] ] )
# Make integer
@@ -472,7 +472,7 @@
# zero in print_label and locate_label. Other than these
# functions, this is not necessary and should probably be
# eventually removed.
- if numerical_methods.is_closed_polygon( lc ):
+ if mlab.is_closed_polygon( lc ):
slc = np.r_[ slc0, slc0[1:2,:] ]
else:
slc = slc0
@@ -1009,12 +1009,12 @@
*linestyles*: [None | 'solid' | 'dashed' | 'dashdot' | 'dotted' ]
If *linestyles* is *None*, the 'solid' is used.
-
+
*linestyles* can also be an iterable of the above strings
specifying a set of linestyles to be used. If this
iterable is shorter than the number of contour levels
it will be repeated as necessary.
-
+
If contour is using a monochrome colormap and the contour
level is less than 0, then the linestyle specified
in ``contour.negative_linestyle`` in ``matplotlibrc``
Modified: trunk/matplotlib/lib/matplotlib/pylab.py
===================================================================
--- trunk/matplotlib/lib/matplotlib/pylab.py 2008-09-23 18:22:54 UTC (rev
6116)
+++ trunk/matplotlib/lib/matplotlib/pylab.py 2008-09-23 18:25:27 UTC (rev
6117)
@@ -227,7 +227,7 @@
diagonal_matrix, base_repr, binary_repr, log2, ispower2,\
bivariate_normal, load, save
-from matplotlib.numerical_methods import stineman_interp, slopes, \
+from matplotlib.mlab import stineman_interp, slopes, \
stineman_interp, inside_poly, poly_below, poly_between, \
is_closed_polygon, path_length, distances_along_curve, vector_lengths
This was sent by the SourceForge.net collaborative development platform, the
world's largest Open Source development site.
-------------------------------------------------------------------------
This SF.Net email is sponsored by the Moblin Your Move Developer's challenge
Build the coolest Linux based applications with Moblin SDK & win great prizes
Grand prize is a trip for two to an Open Source event anywhere in the world
http://moblin-contest.org/redirect.php?banner_id=100&url=/
_______________________________________________
Matplotlib-checkins mailing list
[email protected]
https://lists.sourceforge.net/lists/listinfo/matplotlib-checkins