Revision: 7088
          http://matplotlib.svn.sourceforge.net/matplotlib/?rev=7088&view=rev
Author:   efiring
Date:     2009-05-06 23:02:57 +0000 (Wed, 06 May 2009)

Log Message:
-----------
Spelling correction and other minor cleanups in mlab

Modified Paths:
--------------
    trunk/matplotlib/lib/matplotlib/mlab.py

Modified: trunk/matplotlib/lib/matplotlib/mlab.py
===================================================================
--- trunk/matplotlib/lib/matplotlib/mlab.py     2009-05-06 20:52:55 UTC (rev 
7087)
+++ trunk/matplotlib/lib/matplotlib/mlab.py     2009-05-06 23:02:57 UTC (rev 
7088)
@@ -175,14 +175,7 @@
 import matplotlib.nxutils as nxutils
 import matplotlib.cbook as cbook
 
-# set is a new builtin function in 2.4; delete the following when
-# support for 2.3 is dropped.
-try:
-    set
-except NameError:
-    from sets import Set as set
 
-
 def linspace(*args, **kw):
     warnings.warn("use numpy.linspace", DeprecationWarning)
     return np.linspace(*args, **kw)
@@ -617,12 +610,10 @@
         :func:`polyval`
            polyval function
     """
-    warnings.warn("use numpy.poyfit", DeprecationWarning)
+    warnings.warn("use numpy.polyfit", DeprecationWarning)
     return np.polyfit(*args, **kwargs)
 
 
-
-
 def polyval(*args, **kwargs):
     """
     *y* = polyval(*p*, *x*)
@@ -899,14 +890,8 @@
     """
     warnings.warn("Use numpy.trapz(y,x) instead of trapz(x,y)", 
DeprecationWarning)
     return np.trapz(y, x)
-    #if len(x)!=len(y):
-    #    raise ValueError, 'x and y must have the same length'
-    #if len(x)<2:
-    #    raise ValueError, 'x and y must have > 1 element'
-    #return np.sum(0.5*np.diff(x)*(y[1:]+y[:-1]))
 
 
-
 def longest_contiguous_ones(x):
     """
     Return the indices of the longest stretch of contiguous ones in *x*,


This was sent by the SourceForge.net collaborative development platform, the 
world's largest Open Source development site.

------------------------------------------------------------------------------
The NEW KODAK i700 Series Scanners deliver under ANY circumstances! Your
production scanning environment may not be a perfect world - but thanks to
Kodak, there's a perfect scanner to get the job done! With the NEW KODAK i700
Series Scanner you'll get full speed at 300 dpi even with all image 
processing features enabled. http://p.sf.net/sfu/kodak-com
_______________________________________________
Matplotlib-checkins mailing list
[email protected]
https://lists.sourceforge.net/lists/listinfo/matplotlib-checkins

Reply via email to