Brian J. Beesley wrote:
Hi,


(1) Could someone with the required background please tidy up my logic and prove that the assertion above is true i.e. there is no prime 2^p-1 with p > 3 such that there are solutions to x^2 mod 2^p-1 = 2^((p+1)/2) + 2


I believe the idea is correct, but it doesn't remove candidates.

Lets try (going out on a limb here, fingers crossed):


Is 2^((p+1)/2) + 2 (mod 2^p-1) a QR?


We can rewrite as 2*(2^((p-1)/2) + 1) (mod 2^p-1) and that is a QR iff
2^((p-1)/2) + 1 (mod 2^p-1) is, as 2 is a QR and quadratic character is
multiplicative.

  ( 2^((p-1)/2) + 1 )
  (-----------------) (Kronecker symbol)
  (      2^p-1      )

  ( (2^p-1) % 2^((p-1)/2) + 1 )
= (---------------------------)
  (      2^((p-1)/2) + 1      )

because 2^((p-1)/2) + 1 == 1 (mod 4) if p>3 and odd, and

(2^p-1)-1 = 2*(2^(p-1)-1) = 2*(2^((p-1)/2)-1)(2^((p-1)/2)+1), therefore
2^((p-1)/2) + 1 | (2^p-1)-1, (2^p-1)-1 == 0 (mod 2^((p-1)/2) + 1)
and thus 2^p-1 == 1 (mod 2^((p-1)/2) + 1).

It follows

  (        1        )
= (-----------------)  = 1
  ( 2^((p-1)/2) + 1 )


If p>3 and odd, 2^((p+1)/2) + 2 (mod 2^p-1) is always a QR.




For the other sqrt(2), -2^((p+1)/2), the question is:

Is -2^((p+1)/2) + 2 a QR?

We can reqrite as (-1)*(2)*(2^((p-1)/2) - 1), since 2^p-1 == 3 (mod 4),
-1 is a QNR and so

( -2^((p+1)/2) + 2 )     ( 2^((p-1)/2) - 1 )
(------------------) = - (-----------------)
(       2^p-1      )     (      2^p-1      )

Since both 2^((p-1)/2) - 1 and 2^p-1 are == 3 (mod 4) for odd p>3,
quadratic reciprocity introduces another sign change, thus

  ( (2^p-1) % 2^((p-1)/2) - 1 )
= (---------------------------)
  (      2^((p-1)/2) - 1      )

2^((p-1)/2) - 1 | (2^p-1)-1 as seen before, so

  (        1        )
= (-----------------)  = 1
  ( 2^((p-1)/2) - 1 )

If p>3 and odd, -2^((p+1)/2) + 2 (mod 2^p-1) is always a QR.


Is there a better (or if applicable, correct) proof? Can, for example, sqrt([+/-]2^((p+1)/2) + 2) in Z/Z(2^p-1) be given explicitly, like sqrt(2) can?


Alex


_________________________________________________________________________
Unsubscribe & list info -- http://www.ndatech.com/mersenne/signup.htm
Mersenne Prime FAQ      -- http://www.tasam.com/~lrwiman/FAQ-mers

Reply via email to