A volta é fácil também: ao calcular a representação decimal de a/b (a e b
naturais), nas divisões sucessivas por b só existem b-1 restos possíveis
(resto = 0 em alguma etapa implica numa decimal finita) e, portanto, após
não mais do que b-1 divisões, um resto vai se repetir, marcando o início de
um novo período na representação decimal.

Agora, suponha que  X =
0,123456789112233445566778899111222333444555666777888999... seja racional.
Então existirão n e p naturais tais que, a partir da n-ésima casa decimal
(1/10^n), os algarismos de X vão se repetir numa sequência com período p.

Mas, pela lei de formação de X, vai existir uma sequência de n+p+1
algarismos iguais a 1, e esta sequência vai começar após a n-ésima casa
decimal.
Ou seja, a sequência vai estar incluída na parte periódica da representação
decimal de X.
Mas como o período é p, isso implica que a parte periódica teria que
ser 111..11 (p algarismos 1) ==> contradição à lei de formação de X.

[]s,
Claudio.


On Fri, Apr 8, 2022 at 11:17 AM Pedro José <petroc...@gmail.com> wrote:

> Bom dia!
> Posso concluir que um número representado por uma infinidade de algarismos
> decimais é racional se e somente se tem um período de repetições desses
> algarismos?
> A ida é fácil se tiver o período é racional.
> Já a volta não sei se é verdade e se for há como provar?
>
> Meu objetivo primário é saber se:
> 0,123456789112233445566778899111222333444555666777888999... é racional. As
> reticências se referem ao aumento de mais um algarismo repetido a cada
> sequência, ou seja a primeira aparição de 1 será 1, a 2a 11 a 3a 111 e
> assim sucessivamente, o mesmo vale para os demais algarismos.
>
> Alguém poderia me ajudar?
> Grato,
> PJMS
>
> --
> Esta mensagem foi verificada pelo sistema de antivírus e
> acredita-se estar livre de perigo.

-- 
Esta mensagem foi verificada pelo sistema de antiv�rus e
 acredita-se estar livre de perigo.

Responder a