Dear Marc, For the weighted mean, one possible solution is as follows and will hopefully give you the general idea:
tmp <- data.frame(x=sample(1:5, 100, replace=TRUE), y=sample(1:100, 100, replace=TRUE), w=runif(100)) lapply(split(tmp[, 2:3], tmp[, "x"]), function(x) { weighted.mean(x=x$y, w=x$w)}) Regards, Andrew C. Ward CAPE Centre Department of Chemical Engineering The University of Queensland Brisbane Qld 4072 Australia Quoting [EMAIL PROTECTED]: > How do I go about generating a WEIGHTED mean (and > standard error) of a > variable (e.g., expenditures) for each level of a > categorical variable > (e.g., geographic region)? I'm looking for something > comparable to PROC > MEANS in SAS with both a class and weight statement. > > > > Thanks. > > > > Marc > > > > > > > > > > > [[alternative HTML version deleted]] > > ______________________________________________ > [EMAIL PROTECTED] mailing list > https://www.stat.math.ethz.ch/mailman/listinfo/r-help > ______________________________________________ [EMAIL PROTECTED] mailing list https://www.stat.math.ethz.ch/mailman/listinfo/r-help