Hi Jan, I join with this email the patch, don't hesitate email me if it is not correct. I solve my oops problem by modifying the driver_remove routine. I think the driver is now operational, the source code seems to be OK too.
Thanks for all, WALLOIS Cyril
diff -u -r rtnet_old/configure.ac rtnet/configure.ac --- rtnet_old/configure.ac 2010-04-28 00:17:50.000000000 +0200 +++ rtnet/configure.ac 2010-04-12 10:22:19.804035000 +0200 @@ -1039,6 +1036,16 @@ AC_MSG_RESULT([${CONFIG_RTNET_DRV_IGB:-n}]) AM_CONDITIONAL(CONFIG_RTNET_DRV_IGB,[test "$CONFIG_RTNET_DRV_IGB" = "y"]) +AC_MSG_CHECKING([whether to build DM9000 Ethernet driver]) +AC_ARG_ENABLE(dm9000, + AS_HELP_STRING([--enable-dm9000], [build dm9000 Ethernet driver]), + [case "$enableval" in + y | yes) CONFIG_RTNET_DRV_DM9000=y ;; + *) CONFIG_RTNET_DRV_DM9000=n ;; + esac]) +AC_MSG_RESULT([${CONFIG_RTNET_DRV_DM9000:-n}]) +AM_CONDITIONAL(CONFIG_RTNET_DRV_DM9000,[test "$CONFIG_RTNET_DRV_DM9000" = "y"]) + dnl ====================================================================== dnl Stack parameters dnl ====================================================================== diff -u -r rtnet_old/drivers/GNUmakefile.am rtnet/drivers/GNUmakefile.am --- rtnet_old/drivers/GNUmakefile.am 2010-04-28 00:17:50.000000000 +0200 +++ rtnet/drivers/GNUmakefile.am 2010-04-12 10:19:38.572035000 +0200 @@ -34,6 +34,7 @@ libkernel_pcnet32.a \ libkernel_smc91111.a \ libkernel_macb.a \ + libkernel_dm9000.a \ libkernel_via-rhine.a RTEXT_KMOD_CFLAGS += $(RTFW_KMOD_CFLAGS) @@ -146,6 +147,15 @@ libkernel_via_rhine_a_SOURCES = \ rt_via-rhine.c +libkernel_dm9000_a_CPPFLAGS = \ + $(RTEXT_KMOD_CFLAGS) \ + -I$(top_srcdir)/stack/include \ + -I$(top_builddir)/stack/include + +libkernel_dm9000_a_SOURCES = \ + rt_dm9000.c \ + rt_dm9000.h + OBJS = @@ -201,6 +211,10 @@ OBJS += rt_via-rhine$(modext) endif +if CONFIG_RTNET_DRV_DM9000 +OBJS += rt_dm9000$(modext) +endif + rt_8139too.o: libkernel_8139too.a $(LD) --whole-archive $< -r -o $@ @@ -240,6 +254,9 @@ rt_via-rhine.o: libkernel_via-rhine.a $(LD) --whole-archive $< -r -o $@ +rt_dm9000.o: libkernel_dm9000.a + $(LD) --whole-archive $< -r -o $@ + all-local: all-local$(modext) # 2.4 build @@ -258,6 +275,7 @@ $(libkernel_pcnet32_a_SOURCES) \ $(libkernel_smc91111_a_SOURCES) \ $(libkernel_macb_a_SOURCES) \ + $(libkernel_dm9000_a_SOURCES) \ $(libkernel_via_rhine_a_SOURCES) FORCE $(RTNET_KBUILD_CMD) @@ -280,6 +298,7 @@ $(libkernel_pcnet32_a_SOURCES) \ $(libkernel_smc91111_a_SOURCES) \ $(libkernel_macb_a_SOURCES) \ + $(libkernel_dm9000_a_SOURCES) \ $(libkernel_via_rhine_a_SOURCES) $(RTNET_KBUILD_CLEAN) diff -u -r rtnet_old/drivers/Kconfig rtnet/drivers/Kconfig --- rtnet_old/drivers/Kconfig 2010-04-28 00:17:50.000000000 +0200 +++ rtnet/drivers/Kconfig 2010-04-28 11:37:08.400030633 +0200 @@ -101,6 +101,9 @@ config RTNET_DRV_AT91ETHER bool "AT91RM9200 Board Ethernet Driver" +config RTNET_DRV_DM9000 + bool "Armadeus Board Ethernet Driver" + config RTNET_DRV_MACB bool "MACB AT91SAM926x devices" ---help--- Seulement dans rtnet/drivers: rt_dm9000.c Seulement dans rtnet/drivers: rt_dm9000.h
/* * Davicom DM9000 Fast Ethernet driver for Linux. * Copyright (C) 1997 Sten Wang * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * (C) Copyright 1997-1998 DAVICOM Semiconductor,Inc. All Rights Reserved. * * Additional updates, Copyright: * Ben Dooks <b...@simtec.co.uk> * Sascha Hauer <s.ha...@pengutronix.de> */ #include <linux/module.h> #include <linux/ioport.h> #include <linux/netdevice.h> #include <linux/etherdevice.h> #include <linux/init.h> #include <linux/crc32.h> #include <linux/mii.h> #include <linux/dm9000.h> #include "rt_dm9000.h" #include <linux/rtnetlink.h>/*add experimental*/ #include <linux/delay.h> #include <linux/platform_device.h> #include <linux/irq.h> #include <asm/delay.h> #include <asm/irq.h> #include <asm/io.h> /* *** RTnet *** */ #include <rtnet_port.h> #define RX_RING_SIZE 8 #define MAX_UNITS 8 #define DEFAULT_RX_POOL_SIZE 16 static int cards[MAX_UNITS] = { [0 ... (MAX_UNITS-1)] = 1 }; compat_module_int_param_array(cards, MAX_UNITS); /* Board/System/Debug information/definition ---------------- */ #define DM9000_PHY 0x40 /* PHY address 0x01 */ #define CARDNAME "dm9000" #define DRV_VERSION "0.2" #define HEADER_LENGTH 14 /* * Transmit timeout, default 5 seconds. */ static int watchdog = 5000; module_param(watchdog, int, 0400); MODULE_PARM_DESC(watchdog, "transmit timeout in milliseconds"); /* DM9000 register address locking. * * The DM9000 uses an address register to control where data written * to the data register goes. This means that the address register * must be preserved over interrupts or similar calls. * * During interrupt and other critical calls, a spinlock is used to * protect the system, but the calls themselves save the address * in the address register in case they are interrupting another * access to the device. * * For general accesses a lock is provided so that calls which are * allowed to sleep are serialised so that the address register does * not need to be saved. This lock also serves to serialise access * to the EEPROM and PHY access registers which are shared between * these two devices. */ /* The driver supports the original DM9000E, and now the two newer * devices, DM9000A and DM9000B. */ enum dm9000_type { TYPE_DM9000E, /* original DM9000 */ TYPE_DM9000A, TYPE_DM9000B }; /* Structure/enum declaration ------------------------------- */ typedef struct board_info { void __iomem *io_addr; /* Register I/O base address */ void __iomem *io_data; /* Data I/O address */ u16 irq; /* IRQ */ u16 tx_pkt_cnt; u16 queue_pkt_len; u16 queue_start_addr; u16 dbug_cnt; u8 io_mode; /* 0:word, 2:byte */ u8 phy_addr; u8 imr_all; unsigned int flags; unsigned int in_suspend :1; int debug_level; enum dm9000_type type; void (*inblk)(void __iomem *port, void *data, int length); void (*outblk)(void __iomem *port, void *data, int length); void (*dumpblk)(void __iomem *port, int length); struct device *dev; /* parent device */ struct resource *addr_res; /* resources found */ struct resource *data_res; struct resource *addr_req; /* resources requested */ struct resource *data_req; struct resource *irq_res; struct mutex addr_lock; /* phy and eeprom access lock */ struct delayed_work phy_poll; struct rtnet_device *ndev; struct rtskb *skb; /* holds skb until xmit interrupt completes */ int skb_length; rtdm_lock_t lock; struct mii_if_info mii; /* ethtool support */ u32 msg_enable; /* RTNet */ struct net_device_stats stats; rtdm_irq_t irq_handle; rtdm_irq_t phy_irq_handle; struct rtskb_queue skb_pool; } board_info_t; static inline board_info_t *to_dm9000_board(struct rtnet_device *dev) { return dev->priv; } /* DM9000 network board routine ---------------------------- */ static void dm9000_reset(board_info_t * db) { /* RESET device */ writeb(DM9000_NCR, db->io_addr); udelay(200); writeb(NCR_RST, db->io_data); udelay(200); } /* * Read a byte from I/O port */ static u8 ior(board_info_t * db, int reg) { writeb(reg, db->io_addr); return readb(db->io_data); } /* * Write a byte to I/O port */ static void iow(board_info_t * db, int reg, int value) { writeb(reg, db->io_addr); writeb(value, db->io_data); } /* routines for sending block to chip */ static void dm9000_outblk_8bit(void __iomem *reg, void *data, int count) { writesb(reg, data, count); } static void dm9000_outblk_16bit(void __iomem *reg, void *data, int count) { writesw(reg, data, (count+1) >> 1); } static void dm9000_outblk_32bit(void __iomem *reg, void *data, int count) { writesl(reg, data, (count+3) >> 2); } /* input block from chip to memory */ static void dm9000_inblk_8bit(void __iomem *reg, void *data, int count) { readsb(reg, data, count); } static void dm9000_inblk_16bit(void __iomem *reg, void *data, int count) { readsw(reg, data, (count+1) >> 1); } static void dm9000_inblk_32bit(void __iomem *reg, void *data, int count) { readsl(reg, data, (count+3) >> 2); } /* dump block from chip to null */ static void dm9000_dumpblk_8bit(void __iomem *reg, int count) { int i; int tmp; for (i = 0; i < count; i++) tmp = readb(reg); } static void dm9000_dumpblk_16bit(void __iomem *reg, int count) { int i; int tmp; count = (count + 1) >> 1; for (i = 0; i < count; i++) tmp = readw(reg); } static void dm9000_dumpblk_32bit(void __iomem *reg, int count) { int i; int tmp; count = (count + 3) >> 2; for (i = 0; i < count; i++) tmp = readl(reg); } /* dm9000_set_io * * select the specified set of io routines to use with the * device */ static void dm9000_set_io(struct board_info *db, int byte_width) { /* use the size of the data resource to work out what IO * routines we want to use */ switch (byte_width) { case 1: db->dumpblk = dm9000_dumpblk_8bit; db->outblk = dm9000_outblk_8bit; db->inblk = dm9000_inblk_8bit; break; case 3: dev_dbg(db->dev, "3 byte IO, falling back to 16bit\n"); case 2: db->dumpblk = dm9000_dumpblk_16bit; db->outblk = dm9000_outblk_16bit; db->inblk = dm9000_inblk_16bit; break; case 4: default: db->dumpblk = dm9000_dumpblk_32bit; db->outblk = dm9000_outblk_32bit; db->inblk = dm9000_inblk_32bit; break; } } static unsigned int dm9000_read_locked(board_info_t *db, int reg) { unsigned int ret; rtdm_lockctx_t context;/*rtnet experimental*/ rtdm_lock_get_irqsave(&db->lock, context);/*rtnet experimental*/ ret = ior(db, reg); rtdm_lock_put_irqrestore(&db->lock, context); /*rtnet experimental*/ return ret; } static int dm9000_wait_eeprom(board_info_t *db) { unsigned int status; int timeout = 8; /* wait max 8msec */ /* The DM9000 data sheets say we should be able to * poll the ERRE bit in EPCR to wait for the EEPROM * operation. From testing several chips, this bit * does not seem to work. * * We attempt to use the bit, but fall back to the * timeout (which is why we do not return an error * on expiry) to say that the EEPROM operation has * completed. */ while (1) { status = dm9000_read_locked(db, DM9000_EPCR); if ((status & EPCR_ERRE) == 0) break; msleep(1); if (timeout-- < 0) { break; } } return 0; } /* * Read a word data from EEPROM */ static void dm9000_read_eeprom(board_info_t *db, int offset, u8 *to) { rtdm_lockctx_t context;/*rtnet experimental*/ if (db->flags & DM9000_PLATF_NO_EEPROM) { to[0] = 0xff; to[1] = 0xff; return; } mutex_lock(&db->addr_lock); rtdm_lock_get_irqsave(&db->lock, context);/*rtnet experimental*/ iow(db, DM9000_EPAR, offset); iow(db, DM9000_EPCR, EPCR_ERPRR); rtdm_lock_put_irqrestore(&db->lock, context); /*rtnet experimental*/ dm9000_wait_eeprom(db); /* delay for at-least 150uS */ msleep(1); rtdm_lock_get_irqsave(&db->lock, context);/*rtnet experimental*/ iow(db, DM9000_EPCR, 0x0); to[0] = ior(db, DM9000_EPDRL); to[1] = ior(db, DM9000_EPDRH); rtdm_lock_put_irqrestore(&db->lock, context); /*rtnet experimental*/ mutex_unlock(&db->addr_lock); } /* dm9000_release_board * * release a board, and any mapped resources */ static void dm9000_release_board(struct platform_device *pdev, struct board_info *db) { /* unmap our resources */ iounmap(db->io_addr); iounmap(db->io_data); /* release the resources */ rtskb_pool_release(&db->skb_pool); release_resource(db->data_req); kfree(db->data_req); release_resource(db->addr_req); kfree(db->addr_req); } static unsigned char dm9000_type_to_char(enum dm9000_type type) { switch (type) { case TYPE_DM9000E: return 'e'; case TYPE_DM9000A: return 'a'; case TYPE_DM9000B: return 'b'; } return '?'; } /* * Set DM9000 multicast address */ static void dm9000_hash_table(struct rtnet_device *dev) { board_info_t *db = dev->priv; struct dev_mc_list *mcptr = dev->mc_list; int mc_cnt = dev->mc_count; int i, oft; u32 hash_val; u16 hash_table[4]; u8 rcr = RCR_DIS_LONG | RCR_DIS_CRC | RCR_RXEN; rtdm_irq_disable(&db->irq_handle); rtdm_lock_get(&db->lock); for (i = 0, oft = DM9000_PAR; i < 6; i++, oft++) iow(db, oft, dev->dev_addr[i]); /* Clear Hash Table */ for (i = 0; i < 4; i++) hash_table[i] = 0x0; /* broadcast address */ hash_table[3] = 0x8000; if (dev->flags & IFF_PROMISC) rcr |= RCR_PRMSC; if (dev->flags & IFF_ALLMULTI) rcr |= RCR_ALL; /* the multicast address in Hash Table : 64 bits */ for (i = 0; i < mc_cnt; i++, mcptr = mcptr->next) { hash_val = ether_crc_le(6, mcptr->dmi_addr) & 0x3f; hash_table[hash_val / 16] |= (u16) 1 << (hash_val % 16); } /* Write the hash table to MAC MD table */ for (i = 0, oft = DM9000_MAR; i < 4; i++) { iow(db, oft++, hash_table[i]); iow(db, oft++, hash_table[i] >> 8); } iow(db, DM9000_RCR, rcr); rtdm_lock_put(&db->lock); rtdm_irq_enable(&db->irq_handle); } /* * Initialize dm9000 board ->rtnet */ static void dm9000_init_dm9000(struct rtnet_device *dev) { board_info_t *db = dev->priv; unsigned int imr; /* I/O mode */ db->io_mode = ior(db, DM9000_ISR) >> 6; /* ISR bit7:6 keeps I/O mode */ /* GPIO0 on pre-activate PHY */ iow(db, DM9000_GPR, 0); /* REG_1F bit0 activate phyxcer */ iow(db, DM9000_GPCR, GPCR_GEP_CNTL); /* Let GPIO0 output */ iow(db, DM9000_GPR, 0); /* Enable PHY */ if (db->flags & DM9000_PLATF_EXT_PHY) iow(db, DM9000_NCR, NCR_EXT_PHY); /* Program operating register */ iow(db, DM9000_TCR, 0); /* TX Polling clear */ iow(db, DM9000_BPTR, 0x3f); /* Less 3Kb, 200us */ iow(db, DM9000_FCR, 0xff); /* Flow Control */ iow(db, DM9000_SMCR, 0); /* Special Mode */ /* clear TX status */ iow(db, DM9000_NSR, NSR_WAKEST | NSR_TX2END | NSR_TX1END); iow(db, DM9000_ISR, ISR_CLR_STATUS); /* Clear interrupt status */ /* Set address filter table */ dm9000_hash_table(dev); imr = IMR_PAR | IMR_PTM | IMR_PRM; if (db->type != TYPE_DM9000E) imr |= IMR_LNKCHNG; db->imr_all = imr; /* Enable TX/RX interrupt mask */ iow(db, DM9000_IMR, imr); /* Init Driver variable */ db->tx_pkt_cnt = 0; db->queue_pkt_len = 0; } /* * Hardware start transmission. * Send a packet to media from the upper layer. */ static int dm9000_start_xmit(struct rtskb *skb, struct rtnet_device *dev) { board_info_t *db = dev->priv; rtdm_lockctx_t context;/*experimental*/ db->skb = skb; db->skb_length = skb->len; db->stats.tx_bytes += skb->len; if (db->tx_pkt_cnt > 1){ return 1; } rtdm_lock_irqsave(context); /* get and patch time stamp just before the transmission */ if (skb->xmit_stamp) *skb->xmit_stamp = cpu_to_be64(rtdm_clock_read() + *skb->xmit_stamp); /* Move data to DM9000 TX RAM */ writeb(DM9000_MWCMD, db->io_addr); (db->outblk)(db->io_data, skb->data,skb->len); db->stats.tx_bytes += skb->len; db->tx_pkt_cnt++; /* TX control: First packet immediately send, second packet queue */ if (db->tx_pkt_cnt == 1) { /* Set TX length to DM9000 */ iow(db, DM9000_TXPLL, skb->len); iow(db, DM9000_TXPLH, skb->len >> 8); /* Issue TX polling command */ iow(db, DM9000_TCR, TCR_TXREQ); /* Cleared after TX complete */ } else { /* Second packet */ db->queue_pkt_len = skb->len; rtnetif_stop_queue(dev); } rtdm_lock_irqrestore(context); /* free this SKB */ dev_kfree_rtskb(skb); return 0; } /* * DM9000 interrupt handler * receive the packet to upper layer, free the transmitted packet */ static void dm9000_tx_done(struct rtnet_device *dev, board_info_t *db) { int tx_status = ior(db, DM9000_NSR); /* Got TX status */ if (tx_status & (NSR_TX2END | NSR_TX1END)) { /* One packet sent complete */ db->tx_pkt_cnt--; db->stats.tx_packets++; if (netif_msg_tx_done(db)) { dev_dbg(db->dev, "tx done, NSR %02x\n", tx_status); } /* Queue packet check & send */ if (db->tx_pkt_cnt > 0) { iow(db, DM9000_TXPLL, db->queue_pkt_len); iow(db, DM9000_TXPLH, db->queue_pkt_len >> 8); iow(db, DM9000_TCR, TCR_TXREQ); } rtnetif_wake_queue(dev); } } struct dm9000_rxhdr { u8 RxPktReady; u8 RxStatus; __le16 RxLen; } __attribute__((__packed__)); /* * Received a packet and pass to upper layer */ static void dm9000_rx(struct rtnet_device *dev,nanosecs_abs_t *time_stamp) { board_info_t *db = dev->priv; struct dm9000_rxhdr rxhdr; struct rtskb *skb; u8 rxbyte, *rdptr; bool GoodPacket; int RxLen; /* Check packet ready or not */ do { ior(db, DM9000_MRCMDX); /* Dummy read */ /* Get most updated data */ rxbyte = readb(db->io_data); /* Status check: this byte must be 0 or 1 */ if (rxbyte > DM9000_PKT_RDY) { iow(db, DM9000_RCR, 0x00); /* Stop Device */ iow(db, DM9000_ISR, IMR_PAR); /* Stop INT request */ return; } if (rxbyte != DM9000_PKT_RDY){ return; } /* A packet ready now & Get status/length */ GoodPacket = true; writeb(DM9000_MRCMD, db->io_addr); (db->inblk)(db->io_data, &rxhdr, sizeof(rxhdr)); RxLen = le16_to_cpu(rxhdr.RxLen); if (netif_msg_rx_status(db)) dev_dbg(db->dev, "RX: status %02x, length %04x\n", rxhdr.RxStatus, RxLen); /* Packet Status check */ if (RxLen < 0x40) { GoodPacket = false; if (netif_msg_rx_err(db)) dev_dbg(db->dev, "RX: Bad Packet (runt)\n"); } if (RxLen > DM9000_PKT_MAX) { dev_dbg(db->dev, "RST: RX Len:%x\n", RxLen); } /* rxhdr.RxStatus is identical to RSR register. */ if (rxhdr.RxStatus & (RSR_FOE | RSR_CE | RSR_AE | RSR_PLE | RSR_RWTO | RSR_LCS | RSR_RF)) { GoodPacket = false; if (rxhdr.RxStatus & RSR_FOE) { if (netif_msg_rx_err(db)) dev_dbg(db->dev, "fifo error\n"); db->stats.rx_fifo_errors++; } if (rxhdr.RxStatus & RSR_CE) { if (netif_msg_rx_err(db)) dev_dbg(db->dev, "crc error\n"); db->stats.rx_crc_errors++; } if (rxhdr.RxStatus & RSR_RF) { if (netif_msg_rx_err(db)) dev_dbg(db->dev, "length error\n"); db->stats.rx_length_errors++; } } /* Move data from DM9000 */ if (GoodPacket && ((skb = dev_alloc_rtskb(RxLen + 4, &db->skb_pool)) != NULL)) { rtskb_reserve(skb, 2); rdptr = (u8 *) rtskb_put(skb, RxLen - 4); skb->rtdev = db->ndev; skb->time_stamp = *time_stamp; /* Read received packet from RX SRAM */ (db->inblk)(db->io_data, rdptr, RxLen); db->stats.rx_bytes += RxLen; /* Pass to upper layer */ skb->protocol = rt_eth_type_trans(skb, dev); rtnetif_rx(skb); db->stats.rx_packets++; } else { /* need to dump the packet's data */ (db->dumpblk)(db->io_data, RxLen); } } while (rxbyte == DM9000_PKT_RDY); } static int dm9000_interrupt(rtdm_irq_t *irq_handle) { nanosecs_abs_t time_stamp = rtdm_clock_read(); struct rtnet_device *dev = rtdm_irq_get_arg(irq_handle, struct rtnet_device); board_info_t *db = dev->priv; int int_status; unsigned int old_packet_cnt = db->stats.rx_packets; u8 reg_save; /* A real interrupt coming */ /* holders of db->lock must always block IRQs */ rtdm_lock_get(&db->lock); /* Save previous register address */ reg_save = readb(db->io_addr); /* Disable all interrupts */ iow(db, DM9000_IMR, IMR_PAR); /* Got DM9000 interrupt status */ int_status = ior(db, DM9000_ISR); /* Got ISR */ iow(db, DM9000_ISR, int_status); /* Clear ISR status */ if (netif_msg_intr(db)) dev_dbg(db->dev, "interrupt status %02x\n", int_status); /* Received the coming packet */ if (int_status & ISR_PRS){ dm9000_rx(dev,&time_stamp); } /* Transmit Interrupt check */ if (int_status & ISR_PTS){ dm9000_tx_done(dev, db); } /* Re-enable interrupt mask */ iow(db, DM9000_IMR, db->imr_all); /* Restore previous register address */ writeb(reg_save, db->io_addr); rtdm_lock_put(&db->lock); if (old_packet_cnt != db->stats.rx_packets) rt_mark_stack_mgr(dev); return RTDM_IRQ_HANDLED; } #ifdef CONFIG_NET_POLL_CONTROLLER /* *Used by netconsole */ static void dm9000_poll_controller(struct rtnet_device *dev) { disable_irq(dev->irq); dm9000_interrupt(dev->irq, dev); enable_irq(dev->irq); } #endif /* * Open the interface. * The interface is opened whenever "ifconfig" actives it. */ static int dm9000_open(struct rtnet_device *dev) { board_info_t *db = dev->priv; unsigned long irqflags = db->irq_res->flags & IRQF_TRIGGER_MASK; int retval; if (netif_msg_ifup(db)) dev_dbg(db->dev, "enabling %s\n", dev->name); /* If there is no IRQ type specified, default to something that * may work, and tell the user that this is a problem */ if (irqflags == IRQF_TRIGGER_NONE) dev_dbg(db->dev, "WARNING: no IRQ resource flags set.\n"); irqflags |= IRQF_SHARED; /* Initialize DM9000 board */ dm9000_reset(db); dm9000_init_dm9000(dev); rt_stack_connect(dev, &STACK_manager); retval = rtdm_irq_request(&db->irq_handle,dev->irq, dm9000_interrupt,0, dev->name, dev); if (retval) return -EAGAIN; /* Init driver variable */ db->dbug_cnt = 0; rtnetif_start_queue(dev); return 0; } /* * Sleep, either by using msleep() or if we are suspending, then * use mdelay() to sleep. */ static void dm9000_msleep(board_info_t *db, unsigned int ms) { if (db->in_suspend) mdelay(ms); else msleep(ms); } /* * Write a word to phyxcer */ static void dm9000_phy_write(struct rtnet_device *dev, int phyaddr_unused, int reg, int value) { board_info_t *db = dev->priv; unsigned long reg_save; rtdm_lockctx_t context;/*rtnet experimental*/ mutex_lock(&db->addr_lock); rtdm_lock_get_irqsave(&db->lock, context);/*rtnet experimental*/ /* Save previous register address */ reg_save = readb(db->io_addr); /* Fill the phyxcer register into REG_0C */ iow(db, DM9000_EPAR, DM9000_PHY | reg); /* Fill the written data into REG_0D & REG_0E */ iow(db, DM9000_EPDRL, value); iow(db, DM9000_EPDRH, value >> 8); iow(db, DM9000_EPCR, EPCR_EPOS | EPCR_ERPRW); /* Issue phyxcer write command */ writeb(reg_save, db->io_addr); rtdm_lock_put_irqrestore(&db->lock, context); /*rtnet experimental*/ dm9000_msleep(db, 1); /* Wait write complete */ rtdm_lock_get_irqsave(&db->lock, context);/*rtnet experimental*/ reg_save = readb(db->io_addr); iow(db, DM9000_EPCR, 0x0); /* Clear phyxcer write command */ /* restore the previous address */ writeb(reg_save, db->io_addr); rtdm_lock_put_irqrestore(&db->lock, context); /*rtnet experimental*/ mutex_unlock(&db->addr_lock); } static void dm9000_shutdown(struct rtnet_device *dev) { board_info_t *db = dev->priv; /* RESET device */ dm9000_phy_write(dev, 0, MII_BMCR, BMCR_RESET); /* PHY RESET */ iow(db, DM9000_GPR, 0x01); /* Power-Down PHY */ iow(db, DM9000_IMR, IMR_PAR); /* Disable all interrupt */ iow(db, DM9000_RCR, 0x00); /* Disable RX */ } /* * Stop the interface. * The interface is stopped when it is brought. */ static int dm9000_stop(struct rtnet_device *ndev) { board_info_t *db = ndev->priv;// netdev_priv(ndev); if (netif_msg_ifdown(db)) dev_dbg(db->dev, "shutting down %s\n", ndev->name); rtnetif_stop_queue(ndev); rtnetif_carrier_off(ndev); dm9000_shutdown(ndev); /* free interrupt */ rtdm_irq_free(&db->irq_handle); rt_stack_disconnect(ndev); return 0; } #define res_size(_r) (((_r)->end - (_r)->start) + 1) /* * Search DM9000 board, allocate space and register it */ static int __devinit dm9000_probe(struct platform_device *pdev) { struct dm9000_plat_data *pdata = pdev->dev.platform_data; struct board_info *db; /* Point a board information structure */ struct rtnet_device *ndev; const unsigned char *mac_src; int ret = 0; int iosize; int i; u32 id_val; static int cards_found = -1; cards_found++; if (cards[cards_found] == 0) return -ENODEV; /* Init network device */ ndev = rt_alloc_etherdev(sizeof(struct board_info));/*rtnet*/ if (!ndev) { return -ENOMEM; } rtdev_alloc_name(ndev, "rteth%d"); rt_rtdev_connect(ndev, &RTDEV_manager); RTNET_SET_MODULE_OWNER(ndev); ndev->vers = RTDEV_VERS_2_0; /* setup board info structure */ db = ndev->priv; memset(db, 0, sizeof(*db)); db->dev = &pdev->dev; db->ndev = ndev; rtdm_lock_init(&db->lock); mutex_init(&db->addr_lock); db->addr_res = platform_get_resource(pdev, IORESOURCE_MEM, 0); db->data_res = platform_get_resource(pdev, IORESOURCE_MEM, 1); db->irq_res = platform_get_resource(pdev, IORESOURCE_IRQ, 0); if (db->addr_res == NULL || db->data_res == NULL || db->irq_res == NULL) { dev_dbg(db->dev, "insufficient resources\n"); ret = -ENOENT; goto out; } iosize = res_size(db->addr_res); db->addr_req = request_mem_region(db->addr_res->start, iosize, pdev->name); if (db->addr_req == NULL) { dev_dbg(db->dev, "cannot claim address reg area\n"); ret = -EIO; goto out; } db->io_addr = ioremap(db->addr_res->start, iosize); if (db->io_addr == NULL) { dev_dbg(db->dev, "failed to ioremap address reg\n"); ret = -EINVAL; goto out; } iosize = res_size(db->data_res); db->data_req = request_mem_region(db->data_res->start, iosize, pdev->name); if (db->data_req == NULL) { dev_dbg(db->dev, "cannot claim data reg area\n"); ret = -EIO; goto out; } db->io_data = ioremap(db->data_res->start, iosize); if (db->io_data == NULL) { dev_dbg(db->dev, "failed to ioremap data reg\n"); ret = -EINVAL; goto out; } /* Get I/O base address and IRQ */ ndev->base_addr = (unsigned long)db->io_addr; ndev->irq = platform_get_irq(pdev, 0);//db->irq_res->start; /* ensure at least we have a default set of IO routines */ dm9000_set_io(db, iosize); /* check to see if anything is being over-ridden */ if (pdata != NULL) { /* check to see if the driver wants to over-ride the * default IO width */ if (pdata->flags & DM9000_PLATF_8BITONLY) dm9000_set_io(db, 1); if (pdata->flags & DM9000_PLATF_16BITONLY) dm9000_set_io(db, 2); if (pdata->flags & DM9000_PLATF_32BITONLY) dm9000_set_io(db, 4); /* check to see if there are any IO routine * over-rides */ if (pdata->inblk != NULL) db->inblk = pdata->inblk; if (pdata->outblk != NULL) db->outblk = pdata->outblk; if (pdata->dumpblk != NULL) db->dumpblk = pdata->dumpblk; db->flags = pdata->flags; } #ifdef CONFIG_DM9000_FORCE_SIMPLE_PHY_POLL db->flags |= DM9000_PLATF_SIMPLE_PHY; #endif dm9000_reset(db); /* try multiple times, DM9000 sometimes gets the read wrong */ for (i = 0; i < 8; i++) { id_val = ior(db, DM9000_VIDL); id_val |= (u32)ior(db, DM9000_VIDH) << 8; id_val |= (u32)ior(db, DM9000_PIDL) << 16; id_val |= (u32)ior(db, DM9000_PIDH) << 24; if (id_val == DM9000_ID) break; dev_dbg(db->dev, "read wrong id 0x%08x\n", id_val); } if (id_val != DM9000_ID) { dev_dbg(db->dev, "wrong id: 0x%08x\n", id_val); ret = -ENODEV; goto out; } /* Identify what type of DM9000 we are working on */ id_val = ior(db, DM9000_CHIPR); dev_dbg(db->dev, "dm9000 revision 0x%02x\n", id_val); switch (id_val) { case CHIPR_DM9000A: db->type = TYPE_DM9000A; break; case CHIPR_DM9000B: db->type = TYPE_DM9000B; break; default: dev_dbg(db->dev, "ID %02x => defaulting to DM9000E\n", id_val); db->type = TYPE_DM9000E; } /* from this point we assume that we have found a DM9000 */ /* driver system function */ ndev->open = &dm9000_open; ndev->hard_start_xmit = &dm9000_start_xmit; ndev->stop = &dm9000_stop; ndev->mtu = DM9000_PKT_MAX; #ifdef CONFIG_NET_POLL_CONTROLLER ndev->poll_controller = &dm9000_poll_controller; #endif db->mii.phy_id_mask = 0x1f; db->mii.reg_num_mask = 0x1f; db->mii.force_media = 0; db->mii.full_duplex = 0; mac_src = "eeprom"; if (rtskb_pool_init(&db->skb_pool, RX_RING_SIZE*2) < RX_RING_SIZE*2) { rtskb_pool_release(&db->skb_pool); rtdev_free(ndev->priv); ndev->priv = NULL; return -ENOMEM; } /* try reading the node address from the attached EEPROM */ for (i = 0; i < 6; i += 2) dm9000_read_eeprom(db, i / 2, ndev->dev_addr+i); if (!is_valid_ether_addr(ndev->dev_addr) && pdata != NULL) { mac_src = "platform data"; memcpy(ndev->dev_addr, pdata->dev_addr, 6); } if (!is_valid_ether_addr(ndev->dev_addr)) { /* try reading from mac */ mac_src = "chip"; for (i = 0; i < 6; i++) ndev->dev_addr[i] = ior(db, i+DM9000_PAR); } if (!is_valid_ether_addr(ndev->dev_addr)) dev_dbg(db->dev, "%s: Invalid ethernet MAC address. Please " "set using ifconfig\n", ndev->name); platform_set_drvdata(pdev, ndev); ret = rt_register_rtnetdev(ndev); if (ret == 0) rtdm_printk("%s: dm9000%c at %p,%p IRQ %d MAC: %pM (%s)\n", ndev->name, dm9000_type_to_char(db->type), db->io_addr, db->io_data, ndev->irq, ndev->dev_addr, mac_src); return 0; out: dev_dbg(db->dev, "not found (%d).\n", ret); dm9000_release_board(pdev, db); rtdev_free(ndev); return ret; } static int __devexit dm9000_drv_remove(struct platform_device *pdev) { struct rtnet_device *ndev = platform_get_drvdata(pdev); board_info_t *db = (board_info_t *) ndev->priv; rt_unregister_rtnetdev(ndev); rt_rtdev_disconnect(ndev); /* unmap our resources */ iounmap(db->io_addr); iounmap(db->io_data); /* release the resources */ rtskb_pool_release(&db->skb_pool); release_resource(db->data_req); kfree(db->data_req); release_resource(db->addr_req); kfree(db->addr_req); platform_set_drvdata(pdev, NULL); rtdev_free(ndev); /* free device structure */ ndev->priv = NULL; dev_dbg(&pdev->dev, "released and freed device\n"); return 0; } static struct platform_driver dm9000_driver = { .driver = { .name = "dm9000", .owner = THIS_MODULE, }, .probe = dm9000_probe, .remove = __devexit_p(dm9000_drv_remove), }; static int __init dm9000_init(void) { printk(KERN_INFO "%s Real Time Ethernet Driver, V%s\n", CARDNAME, DRV_VERSION); return platform_driver_register(&dm9000_driver); } static void __exit dm9000_cleanup(void) { platform_driver_unregister(&dm9000_driver); } module_init(dm9000_init); module_exit(dm9000_cleanup); MODULE_AUTHOR("WALLOIS Cyril, CNRS"); MODULE_DESCRIPTION("Davicom DM9000 real-time network driver"); MODULE_LICENSE("GPL"); MODULE_ALIAS("platform:dm9000");
/* * dm9000 Ethernet */ #ifndef _DM9000X_H_ #define _DM9000X_H_ #define DM9000_ID 0x90000A46 /* although the registers are 16 bit, they are 32-bit aligned. */ #define DM9000_NCR 0x00 #define DM9000_NSR 0x01 #define DM9000_TCR 0x02 #define DM9000_TSR1 0x03 #define DM9000_TSR2 0x04 #define DM9000_RCR 0x05 #define DM9000_RSR 0x06 #define DM9000_ROCR 0x07 #define DM9000_BPTR 0x08 #define DM9000_FCTR 0x09 #define DM9000_FCR 0x0A #define DM9000_EPCR 0x0B #define DM9000_EPAR 0x0C #define DM9000_EPDRL 0x0D #define DM9000_EPDRH 0x0E #define DM9000_WCR 0x0F #define DM9000_PAR 0x10 #define DM9000_MAR 0x16 #define DM9000_GPCR 0x1e #define DM9000_GPR 0x1f #define DM9000_TRPAL 0x22 #define DM9000_TRPAH 0x23 #define DM9000_RWPAL 0x24 #define DM9000_RWPAH 0x25 #define DM9000_VIDL 0x28 #define DM9000_VIDH 0x29 #define DM9000_PIDL 0x2A #define DM9000_PIDH 0x2B #define DM9000_CHIPR 0x2C #define DM9000_SMCR 0x2F #define CHIPR_DM9000A 0x19 #define CHIPR_DM9000B 0x1B #define DM9000_MRCMDX 0xF0 #define DM9000_MRCMD 0xF2 #define DM9000_MRRL 0xF4 #define DM9000_MRRH 0xF5 #define DM9000_MWCMDX 0xF6 #define DM9000_MWCMD 0xF8 #define DM9000_MWRL 0xFA #define DM9000_MWRH 0xFB #define DM9000_TXPLL 0xFC #define DM9000_TXPLH 0xFD #define DM9000_ISR 0xFE #define DM9000_IMR 0xFF #define NCR_EXT_PHY (1<<7) #define NCR_WAKEEN (1<<6) #define NCR_FCOL (1<<4) #define NCR_FDX (1<<3) #define NCR_LBK (3<<1) #define NCR_RST (1<<0) #define NSR_SPEED (1<<7) #define NSR_LINKST (1<<6) #define NSR_WAKEST (1<<5) #define NSR_TX2END (1<<3) #define NSR_TX1END (1<<2) #define NSR_RXOV (1<<1) #define TCR_TJDIS (1<<6) #define TCR_EXCECM (1<<5) #define TCR_PAD_DIS2 (1<<4) #define TCR_CRC_DIS2 (1<<3) #define TCR_PAD_DIS1 (1<<2) #define TCR_CRC_DIS1 (1<<1) #define TCR_TXREQ (1<<0) #define TSR_TJTO (1<<7) #define TSR_LC (1<<6) #define TSR_NC (1<<5) #define TSR_LCOL (1<<4) #define TSR_COL (1<<3) #define TSR_EC (1<<2) #define RCR_WTDIS (1<<6) #define RCR_DIS_LONG (1<<5) #define RCR_DIS_CRC (1<<4) #define RCR_ALL (1<<3) #define RCR_RUNT (1<<2) #define RCR_PRMSC (1<<1) #define RCR_RXEN (1<<0) #define RSR_RF (1<<7) #define RSR_MF (1<<6) #define RSR_LCS (1<<5) #define RSR_RWTO (1<<4) #define RSR_PLE (1<<3) #define RSR_AE (1<<2) #define RSR_CE (1<<1) #define RSR_FOE (1<<0) #define FCTR_HWOT(ot) (( ot & 0xf ) << 4 ) #define FCTR_LWOT(ot) ( ot & 0xf ) #define IMR_PAR (1<<7) #define IMR_ROOM (1<<3) #define IMR_ROM (1<<2) #define IMR_PTM (1<<1) #define IMR_PRM (1<<0) #define ISR_ROOS (1<<3) #define ISR_ROS (1<<2) #define ISR_PTS (1<<1) #define ISR_PRS (1<<0) #define ISR_CLR_STATUS (ISR_ROOS | ISR_ROS | ISR_PTS | ISR_PRS) #define EPCR_REEP (1<<5) #define EPCR_WEP (1<<4) #define EPCR_EPOS (1<<3) #define EPCR_ERPRR (1<<2) #define EPCR_ERPRW (1<<1) #define EPCR_ERRE (1<<0) #define GPCR_GEP_CNTL (1<<0) #define DM9000_PKT_RDY 0x01 /* Packet ready to receive */ #define DM9000_PKT_MAX 1536 /* Received packet max size */ /* DM9000A / DM9000B definitions */ #define IMR_LNKCHNG (1<<5) #define IMR_UNDERRUN (1<<4) #define ISR_LNKCHNG (1<<5) #define ISR_UNDERRUN (1<<4) #endif /* _DM9000X_H_ */
------------------------------------------------------------------------------
_______________________________________________ RTnet-users mailing list RTnet-users@lists.sourceforge.net https://lists.sourceforge.net/lists/listinfo/rtnet-users