Haven't seen this covered by Ron.  Maybe not like I expected but in our 
lifetimes!  Look what K2/Kepler is reporting!  They caught the moment -actually 
about 20 minutes- that a star goes supernova, *visibly*, twice.  Wow, 
meticulous persistence pays.  Tycho Brahe would be so impressed...  They go on 
to say expanding brightness reaches a maximum after 14 days, as all the 
elements (like iron and nickel) are manufactured and released that make life 
and geology (and nice pre-stellar nebulae) interesting:

abstract:
http://arxiv.org/abs/1603.05657

preprint pdf:
http://arxiv.org/pdf/1603.05657v1.pdf

NASA PR Summary:
http://www.nasa.gov/feature/ames/Kepler/caught-for-the-first-time-the-early-flash-of-an-exploding-star

Caught For The First Time: The Early Flash Of An Exploding Star

The brilliant flash of an exploding star’s shockwave—what astronomers call the 
“shock breakout”—has been captured for the first time in the optical wavelength 
or visible light by NASA's planet-hunter, the Kepler space telescope.

An international science team led by Peter Garnavich, an astrophysics professor 
at the University of Notre Dame in Indiana, analyzed light captured by Kepler 
every 30 minutes over a three-year period from 500 distant galaxies, searching 
some 50 trillion stars. They were hunting for signs of massive stellar death 
explosions known as supernovae.
The brightness of a Type II supernova shock breakout
The diagram illustrates the brightness of a supernova event relative to the sun 
as it unfolds. For the first time, a supernova shockwave has been observed in 
the optical wavelength or visible light as it reaches the surface of the star. 
This early flash of light is called a shock breakout. The explosive death of 
this star, called KSN 2011d, as it reaches its maximum brightness takes 14 
days. The shock breakout itself lasts only about 20 minutes, so catching the 
flash of energy is an investigative milestone for astronomers. The unceasing 
gaze of NASA's Kepler space telescope allowed astronomers to see, at last, this 
early moment as the star blows itself to bits. Supernovae like these — known as 
Type II — begin when the internal furnace of a star runs out of nuclear fuel 
causing its core to collapse as gravity takes over. This type of star is called 
a red supergiant star and it is 20,000 times brighter than our sun. As the 
supergiant star goes supernova, the energy traveling from the core reaches the 
surfaces with a burst of light that is 130,000,000 times brighter than the sun. 
The star continues to explode and grow reaching maximum brightness that is 
about 1,000,000,000 times brighter than the sun.
Credits: NASA Ames/W. Stenzel

In 2011, two of these massive stars, called red supergiants, exploded while in 
Kepler’s view. The first behemoth, KSN 2011a, is nearly 300 times the size of 
our sun and a mere 700 million light years from Earth. The second, KSN 2011d, 
is roughly 500 times the size of our sun and around 1.2 billion light years 
away.

“To put their size into perspective, Earth's orbit about our sun would fit 
comfortably within these colossal stars,” said Garnavich.

Whether it’s a plane crash, car wreck or supernova, capturing images of sudden, 
catastrophic events is extremely difficult but tremendously helpful in 
understanding root cause. Just as widespread deployment of mobile cameras has 
made forensic videos more common, the steady gaze of Kepler allowed astronomers 
to see, at last, a supernova shockwave as it reached the surface of a star. The 
shock breakout itself lasts only about 20 minutes, so catching the flash of 
energy is an investigative milestone for astronomers.

“In order to see something that happens on timescales of minutes, like a shock 
breakout, you want to have a camera continuously monitoring the sky,” said 
Garnavich. “You don’t know when a supernova is going to go off, and Kepler's 
vigilance allowed us to be a witness as the explosion began.”

Supernovae like these — known as Type II — begin when the internal furnace of a 
star runs out of nuclear fuel causing its core to collapse as gravity takes 
over.

The two supernovae matched up well with mathematical models of Type II 
explosions reinforcing existing theories. But they also revealed what could 
turn out to be an unexpected variety in the individual details of these 
cataclysmic stellar events.

While both explosions delivered a similar energetic punch, no shock breakout 
was seen in the smaller of the supergiants. Scientists think that is likely due 
to the smaller star being surrounded by gas, perhaps enough to mask the 
shockwave when it reached the star's surface.

“That is the puzzle of these results,” said Garnavich. “You look at two 
supernovae and see two different things. That’s maximum diversity.”

Understanding the physics of these violent events allows scientists to better 
understand how the seeds of chemical complexity and life itself have been 
scattered in space and time in our Milky Way galaxy

"All heavy elements in the universe come from supernova explosions. For 
example, all the silver, nickel, and copper in the earth and even in our bodies 
came from the explosive death throes of stars," said Steve Howell, project 
scientist for NASA's Kepler and K2 missions at NASA’s Ames Research Center in 
California's Silicon Valley. "Life exists because of supernovae."

Garnavich is part of a research team known as the Kepler Extragalactic Survey 
or KEGS. The team is nearly finished mining data from Kepler’s primary mission, 
which ended in 2013 with the failure of reaction wheels that helped keep the 
spacecraft steady. However, with the reboot of the Kepler spacecraft as NASA's 
K2 mission, the team is now combing through more data hunting for supernova 
events in even more galaxies far, far away.

"While Kepler cracked the door open on observing the development of these 
spectacular events, K2 will push it wide open observing dozens more 
supernovae," said Tom Barclay, senior research scientist and director of the 
Kepler and K2 guest observer office at Ames. "These results are a tantalizing 
preamble to what's to come from K2!"

In addition to Notre Dame, the KEGS team also includes researchers from the 
University of Maryland in College Park; the Australian National University in 
Canberra, Australia; the Space Telescope Science Institute in Baltimore, 
Maryland; and the University of California, Berkeley.

The research paper reporting this discovery has been accepted for publication 
in the Astrophysical Journal.

Ames manages the Kepler and K2 missions for NASA’s Science Mission Directorate. 
NASA's Jet Propulsion Laboratory in Pasadena, California, managed Kepler 
mission development. Ball Aerospace & Technologies Corporation operates the 
flight system with support from the Laboratory for Atmospheric and Space 
Physics at the University of Colorado in Boulder.

Authored by H. Pat Brennan/JPL and Michele Johnson/Ames
The brilliant flash of an exploding star’s shockwave—what astronomers call the 
“shock breakout” -- is illustrated in this video animation. The cartoon video 
begins with a view of a red supergiant star that is 500 hundred times bigger 
and 20,000 brighter than our sun. When the star’s internal furnace can no 
longer sustain nuclear fusion its core to collapses under gravity. A shockwave 
from the implosion rushes upward through the star’s layers. The shockwave 
initially breaks through the star’s visible surface as a series of finger-like 
plasma jets. Only 20 minute later the full fury of the shockwave reaches the 
surface and the doomed star blasts apart as a supernova explosion. This 
animation is based on photometric observations made by NASA’s Kepler space 
telescope. By closely monitoring the star KSN 2011d, located 1.2 billion 
light-years away, Kepler caught the onset of the early flash and subsequent 
explosion.
Credits: Credit: NASA Ames, STScI/G. Bacon

Media contact: 

Michele Johnson
Ames Research Center, Moffett Field, Calif.
650-604-6982
michele.john...@nasa.gov
Last Updated: March 21, 2016
Editor: Michele Johnson





______________________________________________

Visit our Facebook page https://www.facebook.com/meteoritecentral and the 
Archives at http://www.meteorite-list-archives.com
Meteorite-list mailing list
Meteorite-list@meteoritecentral.com
https://pairlist3.pair.net/mailman/listinfo/meteorite-list

Reply via email to