Translations from and to English are good. Not so much to other
languages.In any case, I also cheat :-)

One thing I miss it is that they should provide an OCR, so that I could
read letters in photographs, graphs and comics (korean, japanese, chinese,
french or whatever). It would also boost people skills in any language,
since you'd have the object in context.

2017-04-21 13:04 GMT-03:00 Jed Rothwell <jedrothw...@gmail.com>:

> A researcher asked me to translate two papers from Japanese into English:
>
> https://www.jstage.jst.go.jp/article/jsms1963/49/11/49_11_1242/_article
> https://www.jstage.jst.go.jp/article/jsms1963/50/9/50_9_999/_article
>
>
> The first one is:
>
> (J. Soc. Mat. Sci., Japan), Vol.49, No. 11, pp. 1242-1248, Nov. 2000
> Deformation and Aging of Pd by Hydrogen Absorption-Desorption Cycles
> — Deformation of Pd at a Hydrogen Absorption-Desorption Cycle —
>
> Young-guan JUNG, Hideki SUEHIRO and Yuzuru SAKAI
>
>
> I use Google translate to do this. (https://translate.google.com/) It
> feels like cheating, but is sure makes things easier. However, you cannot
> simply dump an Acrobat document into Google translate. That does not work
> well. I thought I would list some of the steps you should to take to make
> Google translate work, and show an example of how the text comes out.
>
> Google translate makes mistakes, as shown below, but in the last few
> months it has improved a great deal thanks to the newest neural network AI
> techniques. See:
>
> https://blog.google/products/translate/found-translation-
> more-accurate-fluent-sentences-google-translate/
>
>
> Here is the worst mistake in the first paragraph:
>
> . . . the occurrence of microcracks and its progress process, many
> problems, durability of the hydrogen storage material It is an obstacle to
> improve sex."
>
> The last part should be:
>
> . . . These problems are obstacles to improving the durability of the
> hydrogen storage material."
>
> Nothing to do with sex! Perhaps people often ask Google translate to
> translate documents about sex, so the AI thinks everything is about sex.
>
> (Oddly enough, that mistake goes away when you submit the sentence
> fragment on its own, outside of the paragraph.)
>
>
> Anyway, to translate an Acrobat document from Japanese into English, take
> the following steps:
>
> 1. Convert the text to Microsoft Word, using a program such as Power PDF.
> This is essential, mainly because it preserves most paragraphs. Submitting
> the Acrobat document as is, or copying the text will produce many errors.
> Every line in a paragraph will break, which will produce nonsensical
> translations.
>
> 2. Fix paragraphs broken by figures and the pages.
>
> 3. Eliminate multiple columns, figures, and all of the formatting you can.
>
> 4. Submit the text to Google translate.
>
> 5. Compare the resulting text to the Japanese original. It is very handy
> to use a voice reading program such as TextAloud (http://nextup.com/) to
> read the text in Japanese as you look through the English text, and vice
> versa.
>
> 6. Correct and adjust the text.
>
> Google translate will often select words that are correct and
> understandable, but they may not be what is normally used in this context.
> For example, it translated Japanese term "suiso kyuuzou" as "hydrogen
> occlusion." I think electrochemists usually say "absorption." Both terms
> are listed in a dictionary:
>
> 水素吸蔵
> [image: 拡張検索] <http://eowp.alc.co.jp/search?q=%e5%90%b8%e8%94%b5>
>
>    - hydrogen absorption
>    - hydrogen input
>    - hydrogen occlusion
>
>
>
> Okay. Here is the Google version of the entire first paragraph with no
> changes:
>
> Regarding the behavior of hydrogen in the metallic structure, many studies
> 1) - 3) have been done mainly concerning the hydrogen embrittlement
> problem. Solid dissolved hydrogen is trapped in dislocations, voids and the
> like in a steel material structure such as carbon steel and stainless
> steel, and is thought to be a factor that promotes destruction, and
> researches on elucidation of the material embrittlement mechanism by
> hydrogen are being conducted. On the other hand, recently, from the
> viewpoint of global environmental problems, development of a hydrogen
> storage material as a clean hydrogen energy carrier is actively underway,
> that is, some metals including rare earth metals easily form hydride It has
> the ability to absorb and release about 1000 times as much hydrogen as its
> own volume. As already seen in nickel-metal hydride batteries 5), etc.,
> this product has been commercialized and the demand is rapidly increasing
> year by year. Furthermore, as hybrid cars that are collecting the topic of
> the future as a future model car also hydrogen batteries using misch metal
> are mounted, enabling environmentally friendly and fuel-efficient systems
> where metal materials occlude hydrogen, metal crystals As hydrogen enters
> the lattice, lattice expansion occurs, resulting in bulk expansion near 10
> to 25% 7) There is further hydrogen release, bulk material shrinks in a
> relatively short time, When this expansion / contraction is repeated, the
> hydrogen occlusion metal generates a mylocrack and is pulverized. This
> micronization leads to deterioration of the hydrogen occluding metal and
> becomes a problem from the viewpoint of durability. Several studies on this
> micronization mechanism have been conducted at the practical material
> level, and internal strain accompanying volume expansion generates micro
> cracks, which promotes micronization, has been proposed)) · 9 However There
> are many unsolved problems such as the relationship between bulk
> deformation (volume expansion) in the macro field and the lattice expansion
> of the microfield, the internal strain distribution caused by the lattice
> expansion, the occurrence of microcracks and its progress process, many
> problems, durability of the hydrogen storage material It is an obstacle to
> improve sex. The authors conducted a single cycle and multiple cycle
> hydrogen charge and discharge experiments by electrolysis using a Pd sample
> which is a typical hydrogen storage material, and the basic relationship
> between material deformation and degradation accompanying hydrogen
> absorption As investigated, the Pd material exhibits gradually deformed
> fracture behavior as the hydrogenation cycle is repeated, its behavior is
> also based on the occurrence of plastic strain and microcrack in one cycle,
> and the number of hydrogen cycles It was the process of accumulating it as
> it overlapped. Therefore, in this paper, we report the deformation /
> deterioration behavior in the hydrogen occlusion-release process of a
> single cycle.
>
>
> Here is the version lightly edited by me:
>
> Regarding the behavior of hydrogen in metallic structures, many studies 1)
> - 3) have been done mainly concerning the hydrogen embrittlement problem.
> Solid dissolved hydrogen is trapped in dislocations, voids and the like in
> a steel material structure such as carbon steel and stainless steel, and is
> thought to be a factor that promotes destruction, so research to elucidate
> the material embrittlement mechanism by hydrogen is being conducted. Then
> too, recently, from the viewpoint of global environmental problems,
> development of a hydrogen storage material as a clean hydrogen energy
> carrier has been actively underway, that is, development of some metals
> including rare earth metals that easily form hydrides which have the
> ability to absorb and release about 1000 times as much hydrogen as their
> own volume. As already seen in nickel-metal hydride batteries 5), etc.,
> this product has been commercialized and the demand is rapidly increasing
> year by year. Furthermore, hybrid cars, which are attracting attention the
> car of the future, are also equipped with hydrogen batteries using misch
> metal, enabling environmentally friendly and fuel-efficient systems where
> metal materials absorb hydrogen, metal crystals As hydrogen enters the
> lattice, lattice expansion occurs, resulting in bulk expansion near 10 to
> 25% 7). When there is further hydrogen release, the bulk material shrinks
> in a relatively short time. When this expansion / contraction cycle is
> repeated, the hydride generates microcracks and is pulverized (micronized).
> This micronization leads to deterioration of the hydrogen absorbing metal
> and it becomes a problem because it reduces durability. Several studies on
> this micronization mechanism have been conducted at the practical material
> level, and internal strain accompanying volume expansion generates micro
> cracks, which promotes micronization, has been proposed 9). However, there
> are many unsolved problems such as the relationship between bulk
> deformation (volume expansion) at the macro-level and lattice expansion at
> the micro-level; the internal strain distribution caused by the lattice
> expansion; the occurrence of microcracks and their progression. These
> problems are obstacles to improving the durability of the hydrogen storage
> material.
>
> - Jed
>
>


-- 
Daniel Rocha - RJ
danieldi...@gmail.com

Reply via email to