The header implements definitions for the 64-bit division helpers
on 64-bit builds only. For 32-bit builds, it can only provide prototypes
and the actual implementation will need to come from elsewhere.

We didn't have any out-of-line definitions in barebox with the result
that functions like div_s64_rem() were so far only usable in
64-bit barebox builds. On 32-bit builds, they would result in a linker
error.

Import the Linux v5.11-rc1 generic out-of-line 64-bit math on 32-bit
implementation to fix this. While at it, synchronize the header to
reduce diff to upstream.

Signed-off-by: Ahmad Fatoum <[email protected]>
---
 include/linux/math64.h | 211 +++++++++++++++++++++++++++++++++++-
 lib/Makefile           |   1 +
 lib/math/Makefile      |   1 +
 lib/math/div64.c       | 235 +++++++++++++++++++++++++++++++++++++++++
 4 files changed, 443 insertions(+), 5 deletions(-)
 create mode 100644 lib/math/Makefile
 create mode 100644 lib/math/div64.c

diff --git a/include/linux/math64.h b/include/linux/math64.h
index 71dd6d7109b7..e8b737e70e50 100644
--- a/include/linux/math64.h
+++ b/include/linux/math64.h
@@ -1,3 +1,4 @@
+/* SPDX-License-Identifier: GPL-2.0 */
 #ifndef _LINUX_MATH64_H
 #define _LINUX_MATH64_H
 
@@ -6,10 +7,16 @@
 
 #if BITS_PER_LONG == 64
 
-#define div64_long(x,y) div64_s64((x),(y))
+#define div64_long(x, y) div64_s64((x), (y))
+#define div64_ul(x, y)   div64_u64((x), (y))
 
 /**
  * div_u64_rem - unsigned 64bit divide with 32bit divisor with remainder
+ * @dividend: unsigned 64bit dividend
+ * @divisor: unsigned 32bit divisor
+ * @remainder: pointer to unsigned 32bit remainder
+ *
+ * Return: sets ``*remainder``, then returns dividend / divisor
  *
  * This is commonly provided by 32bit archs to provide an optimized 64bit
  * divide.
@@ -20,8 +27,13 @@ static inline u64 div_u64_rem(u64 dividend, u32 divisor, u32 
*remainder)
        return dividend / divisor;
 }
 
-/**
+/*
  * div_s64_rem - signed 64bit divide with 32bit divisor with remainder
+ * @dividend: signed 64bit dividend
+ * @divisor: signed 32bit divisor
+ * @remainder: pointer to signed 32bit remainder
+ *
+ * Return: sets ``*remainder``, then returns dividend / divisor
  */
 static inline s64 div_s64_rem(s64 dividend, s32 divisor, s32 *remainder)
 {
@@ -29,16 +41,38 @@ static inline s64 div_s64_rem(s64 dividend, s32 divisor, 
s32 *remainder)
        return dividend / divisor;
 }
 
-/**
+/*
+ * div64_u64_rem - unsigned 64bit divide with 64bit divisor and remainder
+ * @dividend: unsigned 64bit dividend
+ * @divisor: unsigned 64bit divisor
+ * @remainder: pointer to unsigned 64bit remainder
+ *
+ * Return: sets ``*remainder``, then returns dividend / divisor
+ */
+static inline u64 div64_u64_rem(u64 dividend, u64 divisor, u64 *remainder)
+{
+       *remainder = dividend % divisor;
+       return dividend / divisor;
+}
+
+/*
  * div64_u64 - unsigned 64bit divide with 64bit divisor
+ * @dividend: unsigned 64bit dividend
+ * @divisor: unsigned 64bit divisor
+ *
+ * Return: dividend / divisor
  */
 static inline u64 div64_u64(u64 dividend, u64 divisor)
 {
        return dividend / divisor;
 }
 
-/**
+/*
  * div64_s64 - signed 64bit divide with 64bit divisor
+ * @dividend: signed 64bit dividend
+ * @divisor: signed 64bit divisor
+ *
+ * Return: dividend / divisor
  */
 static inline s64 div64_s64(s64 dividend, s64 divisor)
 {
@@ -47,7 +81,8 @@ static inline s64 div64_s64(s64 dividend, s64 divisor)
 
 #elif BITS_PER_LONG == 32
 
-#define div64_long(x,y) div_s64((x),(y))
+#define div64_long(x, y) div_s64((x), (y))
+#define div64_ul(x, y)   div_u64((x), (y))
 
 #ifndef div_u64_rem
 static inline u64 div_u64_rem(u64 dividend, u32 divisor, u32 *remainder)
@@ -61,6 +96,10 @@ static inline u64 div_u64_rem(u64 dividend, u32 divisor, u32 
*remainder)
 extern s64 div_s64_rem(s64 dividend, s32 divisor, s32 *remainder);
 #endif
 
+#ifndef div64_u64_rem
+extern u64 div64_u64_rem(u64 dividend, u64 divisor, u64 *remainder);
+#endif
+
 #ifndef div64_u64
 extern u64 div64_u64(u64 dividend, u64 divisor);
 #endif
@@ -73,6 +112,8 @@ extern s64 div64_s64(s64 dividend, s64 divisor);
 
 /**
  * div_u64 - unsigned 64bit divide with 32bit divisor
+ * @dividend: unsigned 64bit dividend
+ * @divisor: unsigned 32bit divisor
  *
  * This is the most common 64bit divide and should be used if possible,
  * as many 32bit archs can optimize this variant better than a full 64bit
@@ -88,6 +129,8 @@ static inline u64 div_u64(u64 dividend, u32 divisor)
 
 /**
  * div_s64 - signed 64bit divide with 32bit divisor
+ * @dividend: signed 64bit dividend
+ * @divisor: signed 32bit divisor
  */
 #ifndef div_s64
 static inline s64 div_s64(s64 dividend, s32 divisor)
@@ -99,6 +142,164 @@ static inline s64 div_s64(s64 dividend, s32 divisor)
 
 u32 iter_div_u64_rem(u64 dividend, u32 divisor, u64 *remainder);
 
+#ifndef mul_u32_u32
+/*
+ * Many a GCC version messes this up and generates a 64x64 mult :-(
+ */
+static inline u64 mul_u32_u32(u32 a, u32 b)
+{
+       return (u64)a * b;
+}
+#endif
+
+#if defined(CONFIG_ARCH_SUPPORTS_INT128) && defined(__SIZEOF_INT128__)
+
+#ifndef mul_u64_u32_shr
+static inline u64 mul_u64_u32_shr(u64 a, u32 mul, unsigned int shift)
+{
+       return (u64)(((unsigned __int128)a * mul) >> shift);
+}
+#endif /* mul_u64_u32_shr */
+
+#ifndef mul_u64_u64_shr
+static inline u64 mul_u64_u64_shr(u64 a, u64 mul, unsigned int shift)
+{
+       return (u64)(((unsigned __int128)a * mul) >> shift);
+}
+#endif /* mul_u64_u64_shr */
+
+#else
+
+#ifndef mul_u64_u32_shr
+static inline u64 mul_u64_u32_shr(u64 a, u32 mul, unsigned int shift)
+{
+       u32 ah, al;
+       u64 ret;
+
+       al = a;
+       ah = a >> 32;
+
+       ret = mul_u32_u32(al, mul) >> shift;
+       if (ah)
+               ret += mul_u32_u32(ah, mul) << (32 - shift);
+
+       return ret;
+}
+#endif /* mul_u64_u32_shr */
+
+#ifndef mul_u64_u64_shr
+static inline u64 mul_u64_u64_shr(u64 a, u64 b, unsigned int shift)
+{
+       union {
+               u64 ll;
+               struct {
+#ifdef __BIG_ENDIAN
+                       u32 high, low;
+#else
+                       u32 low, high;
+#endif
+               } l;
+       } rl, rm, rn, rh, a0, b0;
+       u64 c;
+
+       a0.ll = a;
+       b0.ll = b;
+
+       rl.ll = mul_u32_u32(a0.l.low, b0.l.low);
+       rm.ll = mul_u32_u32(a0.l.low, b0.l.high);
+       rn.ll = mul_u32_u32(a0.l.high, b0.l.low);
+       rh.ll = mul_u32_u32(a0.l.high, b0.l.high);
+
+       /*
+        * Each of these lines computes a 64-bit intermediate result into "c",
+        * starting at bits 32-95.  The low 32-bits go into the result of the
+        * multiplication, the high 32-bits are carried into the next step.
+        */
+       rl.l.high = c = (u64)rl.l.high + rm.l.low + rn.l.low;
+       rh.l.low = c = (c >> 32) + rm.l.high + rn.l.high + rh.l.low;
+       rh.l.high = (c >> 32) + rh.l.high;
+
+       /*
+        * The 128-bit result of the multiplication is in rl.ll and rh.ll,
+        * shift it right and throw away the high part of the result.
+        */
+       if (shift == 0)
+               return rl.ll;
+       if (shift < 64)
+               return (rl.ll >> shift) | (rh.ll << (64 - shift));
+       return rh.ll >> (shift & 63);
+}
+#endif /* mul_u64_u64_shr */
+
+#endif
+
+#ifndef mul_u64_u32_div
+static inline u64 mul_u64_u32_div(u64 a, u32 mul, u32 divisor)
+{
+       union {
+               u64 ll;
+               struct {
+#ifdef __BIG_ENDIAN
+                       u32 high, low;
+#else
+                       u32 low, high;
+#endif
+               } l;
+       } u, rl, rh;
+
+       u.ll = a;
+       rl.ll = mul_u32_u32(u.l.low, mul);
+       rh.ll = mul_u32_u32(u.l.high, mul) + rl.l.high;
+
+       /* Bits 32-63 of the result will be in rh.l.low. */
+       rl.l.high = do_div(rh.ll, divisor);
+
+       /* Bits 0-31 of the result will be in rl.l.low. */
+       do_div(rl.ll, divisor);
+
+       rl.l.high = rh.l.low;
+       return rl.ll;
+}
+#endif /* mul_u64_u32_div */
+
+u64 mul_u64_u64_div_u64(u64 a, u64 mul, u64 div);
+
+#define DIV64_U64_ROUND_UP(ll, d)      \
+       ({ u64 _tmp = (d); div64_u64((ll) + _tmp - 1, _tmp); })
+
+/**
+ * DIV64_U64_ROUND_CLOSEST - unsigned 64bit divide with 64bit divisor rounded 
to nearest integer
+ * @dividend: unsigned 64bit dividend
+ * @divisor: unsigned 64bit divisor
+ *
+ * Divide unsigned 64bit dividend by unsigned 64bit divisor
+ * and round to closest integer.
+ *
+ * Return: dividend / divisor rounded to nearest integer
+ */
+#define DIV64_U64_ROUND_CLOSEST(dividend, divisor)     \
+       ({ u64 _tmp = (divisor); div64_u64((dividend) + _tmp / 2, _tmp); })
+
+/*
+ * DIV_S64_ROUND_CLOSEST - signed 64bit divide with 32bit divisor rounded to 
nearest integer
+ * @dividend: signed 64bit dividend
+ * @divisor: signed 32bit divisor
+ *
+ * Divide signed 64bit dividend by signed 32bit divisor
+ * and round to closest integer.
+ *
+ * Return: dividend / divisor rounded to nearest integer
+ */
+#define DIV_S64_ROUND_CLOSEST(dividend, divisor)(      \
+{                                                      \
+       s64 __x = (dividend);                           \
+       s32 __d = (divisor);                            \
+       ((__x > 0) == (__d > 0)) ?                      \
+               div_s64((__x + (__d / 2)), __d) :       \
+               div_s64((__x - (__d / 2)), __d);        \
+}                                                      \
+)
+
 static __always_inline u32
 __iter_div_u64_rem(u64 dividend, u32 divisor, u64 *remainder)
 {
diff --git a/lib/Makefile b/lib/Makefile
index ba6af6f2ab24..9c6f4133d77c 100644
--- a/lib/Makefile
+++ b/lib/Makefile
@@ -25,6 +25,7 @@ obj-y                 += cmdlinepart.o
 obj-y                  += recursive_action.o
 obj-y                  += make_directory.o
 obj-y                  += math.o
+obj-y                  += math/
 obj-$(CONFIG_XXHASH)   += xxhash.o
 obj-$(CONFIG_BZLIB)    += decompress_bunzip2.o
 obj-$(CONFIG_ZLIB)     += decompress_inflate.o zlib_inflate/
diff --git a/lib/math/Makefile b/lib/math/Makefile
new file mode 100644
index 000000000000..3341a8e4744b
--- /dev/null
+++ b/lib/math/Makefile
@@ -0,0 +1 @@
+obj-y += div64.o
diff --git a/lib/math/div64.c b/lib/math/div64.c
new file mode 100644
index 000000000000..507de8216a3e
--- /dev/null
+++ b/lib/math/div64.c
@@ -0,0 +1,235 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * Copyright (C) 2003 Bernardo Innocenti <[email protected]>
+ *
+ * Based on former do_div() implementation from asm-parisc/div64.h:
+ *     Copyright (C) 1999 Hewlett-Packard Co
+ *     Copyright (C) 1999 David Mosberger-Tang <[email protected]>
+ *
+ *
+ * Generic C version of 64bit/32bit division and modulo, with
+ * 64bit result and 32bit remainder.
+ *
+ * The fast case for (n>>32 == 0) is handled inline by do_div().
+ *
+ * Code generated for this function might be very inefficient
+ * for some CPUs. __div64_32() can be overridden by linking arch-specific
+ * assembly versions such as arch/ppc/lib/div64.S and arch/sh/lib/div64.S
+ * or by defining a preprocessor macro in arch/include/asm/div64.h.
+ */
+
+#include <linux/bitops.h>
+#include <linux/export.h>
+#include <linux/kernel.h>
+#include <linux/math64.h>
+#include <linux/log2.h>
+
+/* Not needed on 64bit architectures */
+#if BITS_PER_LONG == 32
+
+#ifndef __div64_32
+uint32_t __attribute__((weak)) __div64_32(uint64_t *n, uint32_t base)
+{
+       uint64_t rem = *n;
+       uint64_t b = base;
+       uint64_t res, d = 1;
+       uint32_t high = rem >> 32;
+
+       /* Reduce the thing a bit first */
+       res = 0;
+       if (high >= base) {
+               high /= base;
+               res = (uint64_t) high << 32;
+               rem -= (uint64_t) (high*base) << 32;
+       }
+
+       while ((int64_t)b > 0 && b < rem) {
+               b = b+b;
+               d = d+d;
+       }
+
+       do {
+               if (rem >= b) {
+                       rem -= b;
+                       res += d;
+               }
+               b >>= 1;
+               d >>= 1;
+       } while (d);
+
+       *n = res;
+       return rem;
+}
+EXPORT_SYMBOL(__div64_32);
+#endif
+
+/**
+ * div_s64_rem - signed 64bit divide with 64bit divisor and remainder
+ * @dividend:  64bit dividend
+ * @divisor:   64bit divisor
+ * @remainder:  64bit remainder
+ */
+#ifndef div_s64_rem
+s64 div_s64_rem(s64 dividend, s32 divisor, s32 *remainder)
+{
+       u64 quotient;
+
+       if (dividend < 0) {
+               quotient = div_u64_rem(-dividend, abs(divisor), (u32 
*)remainder);
+               *remainder = -*remainder;
+               if (divisor > 0)
+                       quotient = -quotient;
+       } else {
+               quotient = div_u64_rem(dividend, abs(divisor), (u32 
*)remainder);
+               if (divisor < 0)
+                       quotient = -quotient;
+       }
+       return quotient;
+}
+EXPORT_SYMBOL(div_s64_rem);
+#endif
+
+/**
+ * div64_u64_rem - unsigned 64bit divide with 64bit divisor and remainder
+ * @dividend:  64bit dividend
+ * @divisor:   64bit divisor
+ * @remainder:  64bit remainder
+ *
+ * This implementation is a comparable to algorithm used by div64_u64.
+ * But this operation, which includes math for calculating the remainder,
+ * is kept distinct to avoid slowing down the div64_u64 operation on 32bit
+ * systems.
+ */
+#ifndef div64_u64_rem
+u64 div64_u64_rem(u64 dividend, u64 divisor, u64 *remainder)
+{
+       u32 high = divisor >> 32;
+       u64 quot;
+
+       if (high == 0) {
+               u32 rem32;
+               quot = div_u64_rem(dividend, divisor, &rem32);
+               *remainder = rem32;
+       } else {
+               int n = fls(high);
+               quot = div_u64(dividend >> n, divisor >> n);
+
+               if (quot != 0)
+                       quot--;
+
+               *remainder = dividend - quot * divisor;
+               if (*remainder >= divisor) {
+                       quot++;
+                       *remainder -= divisor;
+               }
+       }
+
+       return quot;
+}
+EXPORT_SYMBOL(div64_u64_rem);
+#endif
+
+/**
+ * div64_u64 - unsigned 64bit divide with 64bit divisor
+ * @dividend:  64bit dividend
+ * @divisor:   64bit divisor
+ *
+ * This implementation is a modified version of the algorithm proposed
+ * by the book 'Hacker's Delight'.  The original source and full proof
+ * can be found here and is available for use without restriction.
+ *
+ * 'http://www.hackersdelight.org/hdcodetxt/divDouble.c.txt'
+ */
+#ifndef div64_u64
+u64 div64_u64(u64 dividend, u64 divisor)
+{
+       u32 high = divisor >> 32;
+       u64 quot;
+
+       if (high == 0) {
+               quot = div_u64(dividend, divisor);
+       } else {
+               int n = fls(high);
+               quot = div_u64(dividend >> n, divisor >> n);
+
+               if (quot != 0)
+                       quot--;
+               if ((dividend - quot * divisor) >= divisor)
+                       quot++;
+       }
+
+       return quot;
+}
+EXPORT_SYMBOL(div64_u64);
+#endif
+
+/**
+ * div64_s64 - signed 64bit divide with 64bit divisor
+ * @dividend:  64bit dividend
+ * @divisor:   64bit divisor
+ */
+#ifndef div64_s64
+s64 div64_s64(s64 dividend, s64 divisor)
+{
+       s64 quot, t;
+
+       quot = div64_u64(abs(dividend), abs(divisor));
+       t = (dividend ^ divisor) >> 63;
+
+       return (quot ^ t) - t;
+}
+EXPORT_SYMBOL(div64_s64);
+#endif
+
+#endif /* BITS_PER_LONG == 32 */
+
+/*
+ * Iterative div/mod for use when dividend is not expected to be much
+ * bigger than divisor.
+ */
+u32 iter_div_u64_rem(u64 dividend, u32 divisor, u64 *remainder)
+{
+       return __iter_div_u64_rem(dividend, divisor, remainder);
+}
+EXPORT_SYMBOL(iter_div_u64_rem);
+
+#ifndef mul_u64_u64_div_u64
+u64 mul_u64_u64_div_u64(u64 a, u64 b, u64 c)
+{
+       u64 res = 0, div, rem;
+       int shift;
+
+       /* can a * b overflow ? */
+       if (ilog2(a) + ilog2(b) > 62) {
+               /*
+                * (b * a) / c is equal to
+                *
+                *      (b / c) * a +
+                *      (b % c) * a / c
+                *
+                * if nothing overflows. Can the 1st multiplication
+                * overflow? Yes, but we do not care: this can only
+                * happen if the end result can't fit in u64 anyway.
+                *
+                * So the code below does
+                *
+                *      res = (b / c) * a;
+                *      b = b % c;
+                */
+               div = div64_u64_rem(b, c, &rem);
+               res = div * a;
+               b = rem;
+
+               shift = ilog2(a) + ilog2(b) - 62;
+               if (shift > 0) {
+                       /* drop precision */
+                       b >>= shift;
+                       c >>= shift;
+                       if (!c)
+                               return res;
+               }
+       }
+
+       return res + div64_u64(a * b, c);
+}
+#endif
-- 
2.29.2


_______________________________________________
barebox mailing list
[email protected]
http://lists.infradead.org/mailman/listinfo/barebox

Reply via email to