Hi Herve, thanks a lot for re-enabling the subsetting functionality for CompressedRleList with List-like objects. While things work now, I noticed a big difference in execution time for the following operations:
with IRanges_1.18.2 rles <- RleList(Rle(values=TRUE,lengths=10000), Rle(values=TRUE,lengths= 10000), Rle(values=TRUE,lengths= 10000), Rle(values=TRUE,lengths=10000), Rle(values=TRUE,lengths=10000), Rle(values=TRUE,lengths=10000), Rle(values=TRUE,lengths=10000), Rle(values=TRUE,lengths=10000), compress=TRUE) system.time(seqselect( rles, unname(list(a=20:108, b=41:131, c=21:105, d=1:1234, e=4:5, f=1223:1243, g=432:5234, h=444:5555) )) <- TRUE) clocks ca. *0.040s *on my system. R 3.0.2 with other attached packages: [1] Rsamtools_1.12.2 Biostrings_2.28.0 devtools_1.3 [4] GenomicRanges_1.12.4 IRanges_1.18.2 BiocGenerics_0.6.0 [7] Defaults_1.1-1 BiocInstaller_1.10.3 roxygen2_2.2.2 [10] digest_0.6.3 with IRanges_1.20.5, the same operation is much slower: system.time( rles[ unname( list(a=20:108, b=41:131, c=21:105, d=1:1234, e=4:5, f=1223:1243, g=432:5234, h=444:5555)) ] <- TRUE ) takes about *0.45s * more than 10x longer. R3.0.0 with other attached packages: [1] devtools_1.3 rtracklayer_1.22.0 Rsamtools_1.14.1 [4] Biostrings_2.30.0 GenomicRanges_1.14.3 XVector_0.2.0 [7] IRanges_1.20.5 BiocGenerics_0.8.0 Defaults_1.1-1 [10] BiocInstaller_1.12.0 roxygen2_2.2.2 digest_0.6.3 I noticed even larger speed degradation with real-life, longer datasets, so the decrease appears to be non-linear. Can you reproduce this difference in performance ? If so, would it be possible to reinstate the old seqselect method for the sake of efficiency ? Thomas [[alternative HTML version deleted]] _______________________________________________ Bioc-devel@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/bioc-devel