It's neat to use the payment address as an implicit signature by hashing
something and multiplying it into the payee's pubKey.

 One downside is that it complicates the merchant's wallet. In this case
the payment is going to a pseudo-random address which the merchant will
have to explicitly add to their wallet, complicating backups, etc.

 The other challenge is how to handle an error when you POST to the
payment_url. In the original spec, the payer would only broadcast the
transaction themselves if there wasn't a payment_url. In the current
version it looks like the payer will broadcast the transaction(s) either
way. I only saw some of the discussions around this, but I think part of
the problem is what state do you put the payer's wallet into if you POST a
Payment and don't get a PaymentAck? If the payer always broadcasts the
transaction, then wallet state becomes obvious. With your proposal you
would not want the payer to broadcast the transaction without a PaymentAck,
since you need the merchant to acknowledge they know where to look for the

 Backing up a step, I'm not sure what the threat model is for signing the
refund address? The same process that's signing the transaction is doing an
HTTPS POST with the refund address. If an attacker can defeat that, then
they can just redirect the payment in the first place. The only benefit I
can think of is the payer can prove what refund address they specified with
the payment.

 Wouldn't it be easier to just get the merchant to sign the PaymentAck?
Technically they already are signing it, but a TLS stream probably isn't
the most convenient way to capture that.
Try New Relic Now & We'll Send You this Cool Shirt
New Relic is the only SaaS-based application performance monitoring service 
that delivers powerful full stack analytics. Optimize and monitor your
browser, app, & servers with just a few lines of code. Try New Relic
and get this awesome Nerd Life shirt!
Bitcoin-development mailing list

Reply via email to