Hello Jürgen,
        I get
      ¯11J¯1 | ¯10J¯12modulus (A) is: (-11,-1)⎕CT is: 1e-13A=0 is:
(0,0)A+A=0 is: (-11,-1)B÷A+A=0 is: (1,1)bif_floor(): area c: x=1,
y=1⌊B÷A+A=0 is: (1,0)A×⌊B÷A+A=0 is: (-11,-1)B-A×⌊B÷A+A=0 is: (1,-
11)1J¯11
        According to the diagram in Eugene's article, ⌊ 1J1 is 1J0, not
1J1.
Regards,
Fred
On Sat, 2017-06-24 at 23:12 +0200, Juergen Sauermann wrote:
>     Hi Fred,
> 
>       
> 
>       interesting. I get:
> 
>       
> 
>             ¯11J¯1 |
>           ¯10J¯12
> 
>           modulus (A) is: (-11,-1)
> 
>           ⎕CT is: 1e-13
> 
>           A=0 is: (0,0)
> 
>           A+A=0 is: (-11,-1)
> 
>           B÷A+A=0 is: (1,1)
> 
>           bif_floor(): area a/d: x=0, y=0
> 
>           ⌊B÷A+A=0 is: (1,1)
> 
>           A×⌊B÷A+A=0 is: (-10,-12)
> 
>           B-A×⌊B÷A+A=0 is: (0,0)
> 
>           0
> 
>       
> 
>       Attached is a debug variant using SVN 761.
> 
>       
> 
>       Best Regards,
> 
>       Jürgen
> 
>       
> 
>     
> 
>     On 06/24/2017 09:27 PM, Frederick Pitts
>       wrote:
> 
>     
>     
> >       
> >       Jürgen,
> >       
> > 
> >         
> >        Using SVN 971 and testing all possible parings of Gaussian
> >         integers where the real and imaginary parts range
> > independently
> >         from ¯15 to 15, the residue function yields the following
> >         anomalous results
> >       
> > 
> >       
> >             ¯11J¯1 | ¯10J¯12 1J¯11
> >       1J¯11 0
> >             ¯11J1 | ¯12J¯10  ¯1J¯11
> >       ¯1J¯11 0
> >              ¯1J¯11 | 10J¯12  11J¯1
> >       11J¯1 0
> >             1J¯11 | 12J¯10  11J1
> >       11J1 0
> >              ¯1J11 | ¯12J10  ¯11J¯1
> >       ¯11J¯1 0
> >               1J11 | ¯10J12  ¯11J1
> >       ¯11J1 0
> >              11J¯1 | 12J10 1J11
> >       1J11 0
> >              11J1 | 10J12 ¯1J11
> >       ¯1J11 0
> >       
> > 
> >       
> >       The first item in each test result line is not in the
> >         complete residue system for the given modulus as evidenced
> > by
> >         the second item on the line. 
> >       
> > 
> >       
> >        The same test using McDonnell's APL implementations of floor
> >         and residue yields no errors.
> >       
> > 
> >       
> >       Regards,
> >       
> > 
> >       
> >       Fred
> >       
> > 
> >       
> >       
> > 
> >       
> >       On Sat, 2017-06-24 at 20:21 +0200, Juergen Sauermann wrote:
> >       
> > >  Hi Fred,
> > > 
> > >           
> > > 
> > >           I am glad to hear that. It is in SVN 971 now. It was
> > >           Jay who moved us into the right
> > > 
> > >           direction, thanks for that. I had used the Donell paper
> > >           earlier (when designing complex
> > > 
> > >           floor) but the borderline cases (i.e. when ⎕CT makes a
> > >           difference) were not considered
> > > 
> > >           in the paper, and the descriptions in both ISO and the
> > > APL2
> > >           language reference are
> > > 
> > >           entirely misleading in that respect.
> > > 
> > >           
> > > 
> > >           Have a nice weekend,
> > > 
> > >           
> > > 
> > >           Best Regards,
> > > 
> > >           /// Jürgen
> > > 
> > >           
> > > 
> > >         
> > > 
> > >         On 06/24/2017 07:55 PM, Frederick
> > >           Pitts wrote:
> > > 
> > >         
> > >         
> > > >           
> > > >           Hello Jürgen,
> > > >           
> > > > 
> > > >             
> > > >           
> > > >               SUCCESS.
> > > >           
> > > > 
> > > >             
> > > >           
> > > >               The cut-and-paste below from my platform is
> > > > identical to
> > > >               yours
> > > >           
> > > > 
> > > >             
> > > >                 5J3 | ¯7J6
> > > >           ⎕CT is: 1e-13
> > > >           modulus (A) is: (5,3)
> > > >           A=0 is: (0,0)
> > > >           A+A=0 is: (5,3)
> > > >           B÷A+A=0 is: (-0.5,1.5)
> > > >           ⌊B÷A+A=0 is: (0,1)
> > > >           A×⌊B÷A+A=0 is: (-3,5)
> > > >           B-A×⌊B÷A+A=0 is: (-4,1)
> > > >           ¯4J1
> > > >           
> > > > 
> > > >           
> > > >           and 5J3 | 4J¯1 ¯4J1 give the correct answer too.
> > > >           
> > > > 
> > > >           
> > > >            If you want, I can patch the undebugged version of
> > > >             Complex.cc and run a battery of tests. If not, I
> > > > will wait
> > > >             and run the tests on the next SVN version.
> > > >           
> > > > 
> > > >           
> > > >            I think i need to find something useful to do with
> > > >             Gaussian integers.
> > > >           
> > > > 
> > > >           
> > > >           Regards,
> > > >           
> > > > 
> > > >           
> > > >           Fred
> > > >         
> > > 
> > >         
> > > 
> > >       
> > 
> >     
> 
>     
> 
>   
> 

Reply via email to