On Thu, Sep 24, 2015 at 11:46 PM, Shigio YAMAGUCHI <[email protected]> wrote:
> Hi,
> > Fist and third results are incorrect.
>
> Could you post the following source code so that all people
> in this list may be seen?
>
> llvm-or1k/include/llvm/CodeGen/MachineScheduler.h
>
//==- MachineScheduler.h - MachineInstr Scheduling Pass ----------*- C++ -*-==//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file provides an interface for customizing the standard MachineScheduler
// pass. Note that the entire pass may be replaced as follows:
//
// <Target>TargetMachine::createPassConfig(PassManagerBase &PM) {
// PM.substitutePass(&MachineSchedulerID, &CustomSchedulerPassID);
// ...}
//
// The MachineScheduler pass is only responsible for choosing the regions to be
// scheduled. Targets can override the DAG builder and scheduler without
// replacing the pass as follows:
//
// ScheduleDAGInstrs *<Target>PassConfig::
// createMachineScheduler(MachineSchedContext *C) {
// return new CustomMachineScheduler(C);
// }
//
// The default scheduler, ScheduleDAGMILive, builds the DAG and drives list
// scheduling while updating the instruction stream, register pressure, and live
// intervals. Most targets don't need to override the DAG builder and list
// schedulier, but subtargets that require custom scheduling heuristics may
// plugin an alternate MachineSchedStrategy. The strategy is responsible for
// selecting the highest priority node from the list:
//
// ScheduleDAGInstrs *<Target>PassConfig::
// createMachineScheduler(MachineSchedContext *C) {
// return new ScheduleDAGMI(C, CustomStrategy(C));
// }
//
// The DAG builder can also be customized in a sense by adding DAG mutations
// that will run after DAG building and before list scheduling. DAG mutations
// can adjust dependencies based on target-specific knowledge or add weak edges
// to aid heuristics:
//
// ScheduleDAGInstrs *<Target>PassConfig::
// createMachineScheduler(MachineSchedContext *C) {
// ScheduleDAGMI *DAG = new ScheduleDAGMI(C, CustomStrategy(C));
// DAG->addMutation(new CustomDependencies(DAG->TII, DAG->TRI));
// return DAG;
// }
//
// A target that supports alternative schedulers can use the
// MachineSchedRegistry to allow command line selection. This can be done by
// implementing the following boilerplate:
//
// static ScheduleDAGInstrs *createCustomMachineSched(MachineSchedContext *C) {
// return new CustomMachineScheduler(C);
// }
// static MachineSchedRegistry
// SchedCustomRegistry("custom", "Run my target's custom scheduler",
// createCustomMachineSched);
//
//
// Finally, subtargets that don't need to implement custom heuristics but would
// like to configure the GenericScheduler's policy for a given scheduler region,
// including scheduling direction and register pressure tracking policy, can do
// this:
//
// void <SubTarget>Subtarget::
// overrideSchedPolicy(MachineSchedPolicy &Policy,
// MachineInstr *begin,
// MachineInstr *end,
// unsigned NumRegionInstrs) const {
// Policy.<Flag> = true;
// }
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CODEGEN_MACHINESCHEDULER_H
#define LLVM_CODEGEN_MACHINESCHEDULER_H
#include "llvm/CodeGen/MachinePassRegistry.h"
#include "llvm/CodeGen/RegisterPressure.h"
#include "llvm/CodeGen/ScheduleDAGInstrs.h"
namespace llvm {
extern cl::opt<bool> ForceTopDown;
extern cl::opt<bool> ForceBottomUp;
class AliasAnalysis;
class LiveIntervals;
class MachineDominatorTree;
class MachineLoopInfo;
class RegisterClassInfo;
class ScheduleDAGInstrs;
class SchedDFSResult;
class ScheduleHazardRecognizer;
/// MachineSchedContext provides enough context from the MachineScheduler pass
/// for the target to instantiate a scheduler.
struct MachineSchedContext {
MachineFunction *MF;
const MachineLoopInfo *MLI;
const MachineDominatorTree *MDT;
const TargetPassConfig *PassConfig;
AliasAnalysis *AA;
LiveIntervals *LIS;
RegisterClassInfo *RegClassInfo;
MachineSchedContext();
virtual ~MachineSchedContext();
};
/// MachineSchedRegistry provides a selection of available machine instruction
/// schedulers.
class MachineSchedRegistry : public MachinePassRegistryNode {
public:
typedef ScheduleDAGInstrs *(*ScheduleDAGCtor)(MachineSchedContext *);
// RegisterPassParser requires a (misnamed) FunctionPassCtor type.
typedef ScheduleDAGCtor FunctionPassCtor;
static MachinePassRegistry Registry;
MachineSchedRegistry(const char *N, const char *D, ScheduleDAGCtor C)
: MachinePassRegistryNode(N, D, (MachinePassCtor)C) {
Registry.Add(this);
}
~MachineSchedRegistry() { Registry.Remove(this); }
// Accessors.
//
MachineSchedRegistry *getNext() const {
return (MachineSchedRegistry *)MachinePassRegistryNode::getNext();
}
static MachineSchedRegistry *getList() {
return (MachineSchedRegistry *)Registry.getList();
}
static void setListener(MachinePassRegistryListener *L) {
Registry.setListener(L);
}
};
class ScheduleDAGMI;
/// Define a generic scheduling policy for targets that don't provide their own
/// MachineSchedStrategy. This can be overriden for each scheduling region
/// before building the DAG.
struct MachineSchedPolicy {
// Allow the scheduler to disable register pressure tracking.
bool ShouldTrackPressure;
// Allow the scheduler to force top-down or bottom-up scheduling. If neither
// is true, the scheduler runs in both directions and converges.
bool OnlyTopDown;
bool OnlyBottomUp;
MachineSchedPolicy(): ShouldTrackPressure(false), OnlyTopDown(false),
OnlyBottomUp(false) {}
};
/// MachineSchedStrategy - Interface to the scheduling algorithm used by
/// ScheduleDAGMI.
///
/// Initialization sequence:
/// initPolicy -> shouldTrackPressure -> initialize(DAG) -> registerRoots
class MachineSchedStrategy {
virtual void anchor();
public:
virtual ~MachineSchedStrategy() {}
/// Optionally override the per-region scheduling policy.
virtual void initPolicy(MachineBasicBlock::iterator Begin,
MachineBasicBlock::iterator End,
unsigned NumRegionInstrs) {}
/// Check if pressure tracking is needed before building the DAG and
/// initializing this strategy. Called after initPolicy.
virtual bool shouldTrackPressure() const { return true; }
/// Initialize the strategy after building the DAG for a new region.
virtual void initialize(ScheduleDAGMI *DAG) = 0;
/// Notify this strategy that all roots have been released (including those
/// that depend on EntrySU or ExitSU).
virtual void registerRoots() {}
/// Pick the next node to schedule, or return NULL. Set IsTopNode to true to
/// schedule the node at the top of the unscheduled region. Otherwise it will
/// be scheduled at the bottom.
virtual SUnit *pickNode(bool &IsTopNode) = 0;
/// \brief Scheduler callback to notify that a new subtree is scheduled.
virtual void scheduleTree(unsigned SubtreeID) {}
/// Notify MachineSchedStrategy that ScheduleDAGMI has scheduled an
/// instruction and updated scheduled/remaining flags in the DAG nodes.
virtual void schedNode(SUnit *SU, bool IsTopNode) = 0;
/// When all predecessor dependencies have been resolved, free this node for
/// top-down scheduling.
virtual void releaseTopNode(SUnit *SU) = 0;
/// When all successor dependencies have been resolved, free this node for
/// bottom-up scheduling.
virtual void releaseBottomNode(SUnit *SU) = 0;
};
/// Mutate the DAG as a postpass after normal DAG building.
class ScheduleDAGMutation {
virtual void anchor();
public:
virtual ~ScheduleDAGMutation() {}
virtual void apply(ScheduleDAGMI *DAG) = 0;
};
/// ScheduleDAGMI is an implementation of ScheduleDAGInstrs that simply
/// schedules machine instructions according to the given MachineSchedStrategy
/// without much extra book-keeping. This is the common functionality between
/// PreRA and PostRA MachineScheduler.
class ScheduleDAGMI : public ScheduleDAGInstrs {
protected:
AliasAnalysis *AA;
MachineSchedStrategy *SchedImpl;
/// Topo - A topological ordering for SUnits which permits fast IsReachable
/// and similar queries.
ScheduleDAGTopologicalSort Topo;
/// Ordered list of DAG postprocessing steps.
std::vector<ScheduleDAGMutation*> Mutations;
/// The top of the unscheduled zone.
MachineBasicBlock::iterator CurrentTop;
/// The bottom of the unscheduled zone.
MachineBasicBlock::iterator CurrentBottom;
/// Record the next node in a scheduled cluster.
const SUnit *NextClusterPred;
const SUnit *NextClusterSucc;
#ifndef NDEBUG
/// The number of instructions scheduled so far. Used to cut off the
/// scheduler at the point determined by misched-cutoff.
unsigned NumInstrsScheduled;
#endif
public:
ScheduleDAGMI(MachineSchedContext *C, MachineSchedStrategy *S, bool IsPostRA):
ScheduleDAGInstrs(*C->MF, *C->MLI, *C->MDT, IsPostRA,
/*RemoveKillFlags=*/IsPostRA, C->LIS),
AA(C->AA), SchedImpl(S), Topo(SUnits, &ExitSU), CurrentTop(),
CurrentBottom(), NextClusterPred(NULL), NextClusterSucc(NULL) {
#ifndef NDEBUG
NumInstrsScheduled = 0;
#endif
}
virtual ~ScheduleDAGMI();
/// Return true if this DAG supports VReg liveness and RegPressure.
virtual bool hasVRegLiveness() const { return false; }
/// Add a postprocessing step to the DAG builder.
/// Mutations are applied in the order that they are added after normal DAG
/// building and before MachineSchedStrategy initialization.
///
/// ScheduleDAGMI takes ownership of the Mutation object.
void addMutation(ScheduleDAGMutation *Mutation) {
Mutations.push_back(Mutation);
}
/// \brief True if an edge can be added from PredSU to SuccSU without creating
/// a cycle.
bool canAddEdge(SUnit *SuccSU, SUnit *PredSU);
/// \brief Add a DAG edge to the given SU with the given predecessor
/// dependence data.
///
/// \returns true if the edge may be added without creating a cycle OR if an
/// equivalent edge already existed (false indicates failure).
bool addEdge(SUnit *SuccSU, const SDep &PredDep);
MachineBasicBlock::iterator top() const { return CurrentTop; }
MachineBasicBlock::iterator bottom() const { return CurrentBottom; }
/// Implement the ScheduleDAGInstrs interface for handling the next scheduling
/// region. This covers all instructions in a block, while schedule() may only
/// cover a subset.
void enterRegion(MachineBasicBlock *bb,
MachineBasicBlock::iterator begin,
MachineBasicBlock::iterator end,
unsigned regioninstrs) override;
/// Implement ScheduleDAGInstrs interface for scheduling a sequence of
/// reorderable instructions.
void schedule() override;
/// Change the position of an instruction within the basic block and update
/// live ranges and region boundary iterators.
void moveInstruction(MachineInstr *MI, MachineBasicBlock::iterator InsertPos);
const SUnit *getNextClusterPred() const { return NextClusterPred; }
const SUnit *getNextClusterSucc() const { return NextClusterSucc; }
void viewGraph(const Twine &Name, const Twine &Title) override;
void viewGraph() override;
protected:
// Top-Level entry points for the schedule() driver...
/// Apply each ScheduleDAGMutation step in order. This allows different
/// instances of ScheduleDAGMI to perform custom DAG postprocessing.
void postprocessDAG();
/// Release ExitSU predecessors and setup scheduler queues.
void initQueues(ArrayRef<SUnit*> TopRoots, ArrayRef<SUnit*> BotRoots);
/// Update scheduler DAG and queues after scheduling an instruction.
void updateQueues(SUnit *SU, bool IsTopNode);
/// Reinsert debug_values recorded in ScheduleDAGInstrs::DbgValues.
void placeDebugValues();
/// \brief dump the scheduled Sequence.
void dumpSchedule() const;
// Lesser helpers...
bool checkSchedLimit();
void findRootsAndBiasEdges(SmallVectorImpl<SUnit*> &TopRoots,
SmallVectorImpl<SUnit*> &BotRoots);
void releaseSucc(SUnit *SU, SDep *SuccEdge);
void releaseSuccessors(SUnit *SU);
void releasePred(SUnit *SU, SDep *PredEdge);
void releasePredecessors(SUnit *SU);
};
/// ScheduleDAGMILive is an implementation of ScheduleDAGInstrs that schedules
/// machine instructions while updating LiveIntervals and tracking regpressure.
class ScheduleDAGMILive : public ScheduleDAGMI {
protected:
RegisterClassInfo *RegClassInfo;
/// Information about DAG subtrees. If DFSResult is NULL, then SchedulerTrees
/// will be empty.
SchedDFSResult *DFSResult;
BitVector ScheduledTrees;
MachineBasicBlock::iterator LiveRegionEnd;
// Map each SU to its summary of pressure changes. This array is updated for
// liveness during bottom-up scheduling. Top-down scheduling may proceed but
// has no affect on the pressure diffs.
PressureDiffs SUPressureDiffs;
/// Register pressure in this region computed by initRegPressure.
bool ShouldTrackPressure;
IntervalPressure RegPressure;
RegPressureTracker RPTracker;
/// List of pressure sets that exceed the target's pressure limit before
/// scheduling, listed in increasing set ID order. Each pressure set is paired
/// with its max pressure in the currently scheduled regions.
std::vector<PressureChange> RegionCriticalPSets;
/// The top of the unscheduled zone.
IntervalPressure TopPressure;
RegPressureTracker TopRPTracker;
/// The bottom of the unscheduled zone.
IntervalPressure BotPressure;
RegPressureTracker BotRPTracker;
public:
ScheduleDAGMILive(MachineSchedContext *C, MachineSchedStrategy *S):
ScheduleDAGMI(C, S, /*IsPostRA=*/false), RegClassInfo(C->RegClassInfo),
DFSResult(0), ShouldTrackPressure(false), RPTracker(RegPressure),
TopRPTracker(TopPressure), BotRPTracker(BotPressure)
{}
virtual ~ScheduleDAGMILive();
/// Return true if this DAG supports VReg liveness and RegPressure.
bool hasVRegLiveness() const override { return true; }
/// \brief Return true if register pressure tracking is enabled.
bool isTrackingPressure() const { return ShouldTrackPressure; }
/// Get current register pressure for the top scheduled instructions.
const IntervalPressure &getTopPressure() const { return TopPressure; }
const RegPressureTracker &getTopRPTracker() const { return TopRPTracker; }
/// Get current register pressure for the bottom scheduled instructions.
const IntervalPressure &getBotPressure() const { return BotPressure; }
const RegPressureTracker &getBotRPTracker() const { return BotRPTracker; }
/// Get register pressure for the entire scheduling region before scheduling.
const IntervalPressure &getRegPressure() const { return RegPressure; }
const std::vector<PressureChange> &getRegionCriticalPSets() const {
return RegionCriticalPSets;
}
PressureDiff &getPressureDiff(const SUnit *SU) {
return SUPressureDiffs[SU->NodeNum];
}
/// Compute a DFSResult after DAG building is complete, and before any
/// queue comparisons.
void computeDFSResult();
/// Return a non-null DFS result if the scheduling strategy initialized it.
const SchedDFSResult *getDFSResult() const { return DFSResult; }
BitVector &getScheduledTrees() { return ScheduledTrees; }
/// Implement the ScheduleDAGInstrs interface for handling the next scheduling
/// region. This covers all instructions in a block, while schedule() may only
/// cover a subset.
void enterRegion(MachineBasicBlock *bb,
MachineBasicBlock::iterator begin,
MachineBasicBlock::iterator end,
unsigned regioninstrs) override;
/// Implement ScheduleDAGInstrs interface for scheduling a sequence of
/// reorderable instructions.
void schedule() override;
/// Compute the cyclic critical path through the DAG.
unsigned computeCyclicCriticalPath();
protected:
// Top-Level entry points for the schedule() driver...
/// Call ScheduleDAGInstrs::buildSchedGraph with register pressure tracking
/// enabled. This sets up three trackers. RPTracker will cover the entire DAG
/// region, TopTracker and BottomTracker will be initialized to the top and
/// bottom of the DAG region without covereing any unscheduled instruction.
void buildDAGWithRegPressure();
/// Move an instruction and update register pressure.
void scheduleMI(SUnit *SU, bool IsTopNode);
// Lesser helpers...
void initRegPressure();
void updatePressureDiffs(ArrayRef<unsigned> LiveUses);
void updateScheduledPressure(const SUnit *SU,
const std::vector<unsigned> &NewMaxPressure);
};
//===----------------------------------------------------------------------===//
///
/// Helpers for implementing custom MachineSchedStrategy classes. These take
/// care of the book-keeping associated with list scheduling heuristics.
///
//===----------------------------------------------------------------------===//
/// ReadyQueue encapsulates vector of "ready" SUnits with basic convenience
/// methods for pushing and removing nodes. ReadyQueue's are uniquely identified
/// by an ID. SUnit::NodeQueueId is a mask of the ReadyQueues the SUnit is in.
///
/// This is a convenience class that may be used by implementations of
/// MachineSchedStrategy.
class ReadyQueue {
unsigned ID;
std::string Name;
std::vector<SUnit*> Queue;
public:
ReadyQueue(unsigned id, const Twine &name): ID(id), Name(name.str()) {}
unsigned getID() const { return ID; }
StringRef getName() const { return Name; }
// SU is in this queue if it's NodeQueueID is a superset of this ID.
bool isInQueue(SUnit *SU) const { return (SU->NodeQueueId & ID); }
bool empty() const { return Queue.empty(); }
void clear() { Queue.clear(); }
unsigned size() const { return Queue.size(); }
typedef std::vector<SUnit*>::iterator iterator;
iterator begin() { return Queue.begin(); }
iterator end() { return Queue.end(); }
ArrayRef<SUnit*> elements() { return Queue; }
iterator find(SUnit *SU) {
return std::find(Queue.begin(), Queue.end(), SU);
}
void push(SUnit *SU) {
Queue.push_back(SU);
SU->NodeQueueId |= ID;
}
iterator remove(iterator I) {
(*I)->NodeQueueId &= ~ID;
*I = Queue.back();
unsigned idx = I - Queue.begin();
Queue.pop_back();
return Queue.begin() + idx;
}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
void dump();
#endif
};
/// Summarize the unscheduled region.
struct SchedRemainder {
// Critical path through the DAG in expected latency.
unsigned CriticalPath;
unsigned CyclicCritPath;
// Scaled count of micro-ops left to schedule.
unsigned RemIssueCount;
bool IsAcyclicLatencyLimited;
// Unscheduled resources
SmallVector<unsigned, 16> RemainingCounts;
void reset() {
CriticalPath = 0;
CyclicCritPath = 0;
RemIssueCount = 0;
IsAcyclicLatencyLimited = false;
RemainingCounts.clear();
}
SchedRemainder() { reset(); }
void init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel);
};
/// Each Scheduling boundary is associated with ready queues. It tracks the
/// current cycle in the direction of movement, and maintains the state
/// of "hazards" and other interlocks at the current cycle.
class SchedBoundary {
public:
/// SUnit::NodeQueueId: 0 (none), 1 (top), 2 (bot), 3 (both)
enum {
TopQID = 1,
BotQID = 2,
LogMaxQID = 2
};
ScheduleDAGMI *DAG;
const TargetSchedModel *SchedModel;
SchedRemainder *Rem;
ReadyQueue Available;
ReadyQueue Pending;
ScheduleHazardRecognizer *HazardRec;
private:
/// True if the pending Q should be checked/updated before scheduling another
/// instruction.
bool CheckPending;
// For heuristics, keep a list of the nodes that immediately depend on the
// most recently scheduled node.
SmallPtrSet<const SUnit*, 8> NextSUs;
/// Number of cycles it takes to issue the instructions scheduled in this
/// zone. It is defined as: scheduled-micro-ops / issue-width + stalls.
/// See getStalls().
unsigned CurrCycle;
/// Micro-ops issued in the current cycle
unsigned CurrMOps;
/// MinReadyCycle - Cycle of the soonest available instruction.
unsigned MinReadyCycle;
// The expected latency of the critical path in this scheduled zone.
unsigned ExpectedLatency;
// The latency of dependence chains leading into this zone.
// For each node scheduled bottom-up: DLat = max DLat, N.Depth.
// For each cycle scheduled: DLat -= 1.
unsigned DependentLatency;
/// Count the scheduled (issued) micro-ops that can be retired by
/// time=CurrCycle assuming the first scheduled instr is retired at time=0.
unsigned RetiredMOps;
// Count scheduled resources that have been executed. Resources are
// considered executed if they become ready in the time that it takes to
// saturate any resource including the one in question. Counts are scaled
// for direct comparison with other resources. Counts can be compared with
// MOps * getMicroOpFactor and Latency * getLatencyFactor.
SmallVector<unsigned, 16> ExecutedResCounts;
/// Cache the max count for a single resource.
unsigned MaxExecutedResCount;
// Cache the critical resources ID in this scheduled zone.
unsigned ZoneCritResIdx;
// Is the scheduled region resource limited vs. latency limited.
bool IsResourceLimited;
// Record the highest cycle at which each resource has been reserved by a
// scheduled instruction.
SmallVector<unsigned, 16> ReservedCycles;
#ifndef NDEBUG
// Remember the greatest operand latency as an upper bound on the number of
// times we should retry the pending queue because of a hazard.
unsigned MaxObservedLatency;
#endif
public:
/// Pending queues extend the ready queues with the same ID and the
/// PendingFlag set.
SchedBoundary(unsigned ID, const Twine &Name):
DAG(0), SchedModel(0), Rem(0), Available(ID, Name+".A"),
Pending(ID << LogMaxQID, Name+".P"),
HazardRec(0) {
reset();
}
~SchedBoundary();
void reset();
void init(ScheduleDAGMI *dag, const TargetSchedModel *smodel,
SchedRemainder *rem);
bool isTop() const {
return Available.getID() == TopQID;
}
/// Number of cycles to issue the instructions scheduled in this zone.
unsigned getCurrCycle() const { return CurrCycle; }
/// Micro-ops issued in the current cycle
unsigned getCurrMOps() const { return CurrMOps; }
/// Return true if the given SU is used by the most recently scheduled
/// instruction.
bool isNextSU(const SUnit *SU) const { return NextSUs.count(SU); }
// The latency of dependence chains leading into this zone.
unsigned getDependentLatency() const { return DependentLatency; }
/// Get the number of latency cycles "covered" by the scheduled
/// instructions. This is the larger of the critical path within the zone
/// and the number of cycles required to issue the instructions.
unsigned getScheduledLatency() const {
return std::max(ExpectedLatency, CurrCycle);
}
unsigned getUnscheduledLatency(SUnit *SU) const {
return isTop() ? SU->getHeight() : SU->getDepth();
}
unsigned getResourceCount(unsigned ResIdx) const {
return ExecutedResCounts[ResIdx];
}
/// Get the scaled count of scheduled micro-ops and resources, including
/// executed resources.
unsigned getCriticalCount() const {
if (!ZoneCritResIdx)
return RetiredMOps * SchedModel->getMicroOpFactor();
return getResourceCount(ZoneCritResIdx);
}
/// Get a scaled count for the minimum execution time of the scheduled
/// micro-ops that are ready to execute by getExecutedCount. Notice the
/// feedback loop.
unsigned getExecutedCount() const {
return std::max(CurrCycle * SchedModel->getLatencyFactor(),
MaxExecutedResCount);
}
unsigned getZoneCritResIdx() const { return ZoneCritResIdx; }
// Is the scheduled region resource limited vs. latency limited.
bool isResourceLimited() const { return IsResourceLimited; }
/// Get the difference between the given SUnit's ready time and the current
/// cycle.
unsigned getLatencyStallCycles(SUnit *SU);
unsigned getNextResourceCycle(unsigned PIdx, unsigned Cycles);
bool checkHazard(SUnit *SU);
unsigned findMaxLatency(ArrayRef<SUnit*> ReadySUs);
unsigned getOtherResourceCount(unsigned &OtherCritIdx);
void releaseNode(SUnit *SU, unsigned ReadyCycle);
void releaseTopNode(SUnit *SU);
void releaseBottomNode(SUnit *SU);
void bumpCycle(unsigned NextCycle);
void incExecutedResources(unsigned PIdx, unsigned Count);
unsigned countResource(unsigned PIdx, unsigned Cycles, unsigned ReadyCycle);
void bumpNode(SUnit *SU);
void releasePending();
void removeReady(SUnit *SU);
/// Call this before applying any other heuristics to the Available queue.
/// Updates the Available/Pending Q's if necessary and returns the single
/// available instruction, or NULL if there are multiple candidates.
SUnit *pickOnlyChoice();
#ifndef NDEBUG
void dumpScheduledState();
#endif
};
} // namespace llvm
#endif
llvm-or1k/lib/CodeGen/SelectionDAG/ScheduleDAGVLIW.cpp
>
//===- ScheduleDAGVLIW.cpp - SelectionDAG list scheduler for VLIW -*- C++ -*-=//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This implements a top-down list scheduler, using standard algorithms.
// The basic approach uses a priority queue of available nodes to schedule.
// One at a time, nodes are taken from the priority queue (thus in priority
// order), checked for legality to schedule, and emitted if legal.
//
// Nodes may not be legal to schedule either due to structural hazards (e.g.
// pipeline or resource constraints) or because an input to the instruction has
// not completed execution.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "pre-RA-sched"
#include "llvm/CodeGen/SchedulerRegistry.h"
#include "ScheduleDAGSDNodes.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/LatencyPriorityQueue.h"
#include "llvm/CodeGen/ResourcePriorityQueue.h"
#include "llvm/CodeGen/ScheduleHazardRecognizer.h"
#include "llvm/CodeGen/SelectionDAGISel.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include <climits>
using namespace llvm;
STATISTIC(NumNoops , "Number of noops inserted");
STATISTIC(NumStalls, "Number of pipeline stalls");
static RegisterScheduler
VLIWScheduler("vliw-td", "VLIW scheduler",
createVLIWDAGScheduler);
namespace {
//===----------------------------------------------------------------------===//
/// ScheduleDAGVLIW - The actual DFA list scheduler implementation. This
/// supports / top-down scheduling.
///
class ScheduleDAGVLIW : public ScheduleDAGSDNodes {
private:
/// AvailableQueue - The priority queue to use for the available SUnits.
///
SchedulingPriorityQueue *AvailableQueue;
/// PendingQueue - This contains all of the instructions whose operands have
/// been issued, but their results are not ready yet (due to the latency of
/// the operation). Once the operands become available, the instruction is
/// added to the AvailableQueue.
std::vector<SUnit*> PendingQueue;
/// HazardRec - The hazard recognizer to use.
ScheduleHazardRecognizer *HazardRec;
/// AA - AliasAnalysis for making memory reference queries.
AliasAnalysis *AA;
public:
ScheduleDAGVLIW(MachineFunction &mf,
AliasAnalysis *aa,
SchedulingPriorityQueue *availqueue)
: ScheduleDAGSDNodes(mf), AvailableQueue(availqueue), AA(aa) {
const TargetMachine &tm = mf.getTarget();
HazardRec = tm.getInstrInfo()->CreateTargetHazardRecognizer(&tm, this);
}
~ScheduleDAGVLIW() {
delete HazardRec;
delete AvailableQueue;
}
void Schedule() override;
private:
void releaseSucc(SUnit *SU, const SDep &D);
void releaseSuccessors(SUnit *SU);
void scheduleNodeTopDown(SUnit *SU, unsigned CurCycle);
void listScheduleTopDown();
};
} // end anonymous namespace
/// Schedule - Schedule the DAG using list scheduling.
void ScheduleDAGVLIW::Schedule() {
DEBUG(dbgs()
<< "********** List Scheduling BB#" << BB->getNumber()
<< " '" << BB->getName() << "' **********\n");
// Build the scheduling graph.
BuildSchedGraph(AA);
AvailableQueue->initNodes(SUnits);
listScheduleTopDown();
AvailableQueue->releaseState();
}
//===----------------------------------------------------------------------===//
// Top-Down Scheduling
//===----------------------------------------------------------------------===//
/// releaseSucc - Decrement the NumPredsLeft count of a successor. Add it to
/// the PendingQueue if the count reaches zero. Also update its cycle bound.
void ScheduleDAGVLIW::releaseSucc(SUnit *SU, const SDep &D) {
SUnit *SuccSU = D.getSUnit();
#ifndef NDEBUG
if (SuccSU->NumPredsLeft == 0) {
dbgs() << "*** Scheduling failed! ***\n";
SuccSU->dump(this);
dbgs() << " has been released too many times!\n";
llvm_unreachable(0);
}
#endif
assert(!D.isWeak() && "unexpected artificial DAG edge");
--SuccSU->NumPredsLeft;
SuccSU->setDepthToAtLeast(SU->getDepth() + D.getLatency());
// If all the node's predecessors are scheduled, this node is ready
// to be scheduled. Ignore the special ExitSU node.
if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU) {
PendingQueue.push_back(SuccSU);
}
}
void ScheduleDAGVLIW::releaseSuccessors(SUnit *SU) {
// Top down: release successors.
for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
I != E; ++I) {
assert(!I->isAssignedRegDep() &&
"The list-td scheduler doesn't yet support physreg dependencies!");
releaseSucc(SU, *I);
}
}
/// scheduleNodeTopDown - Add the node to the schedule. Decrement the pending
/// count of its successors. If a successor pending count is zero, add it to
/// the Available queue.
void ScheduleDAGVLIW::scheduleNodeTopDown(SUnit *SU, unsigned CurCycle) {
DEBUG(dbgs() << "*** Scheduling [" << CurCycle << "]: ");
DEBUG(SU->dump(this));
Sequence.push_back(SU);
assert(CurCycle >= SU->getDepth() && "Node scheduled above its depth!");
SU->setDepthToAtLeast(CurCycle);
releaseSuccessors(SU);
SU->isScheduled = true;
AvailableQueue->scheduledNode(SU);
}
/// listScheduleTopDown - The main loop of list scheduling for top-down
/// schedulers.
void ScheduleDAGVLIW::listScheduleTopDown() {
unsigned CurCycle = 0;
// Release any successors of the special Entry node.
releaseSuccessors(&EntrySU);
// All leaves to AvailableQueue.
for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
// It is available if it has no predecessors.
if (SUnits[i].Preds.empty()) {
AvailableQueue->push(&SUnits[i]);
SUnits[i].isAvailable = true;
}
}
// While AvailableQueue is not empty, grab the node with the highest
// priority. If it is not ready put it back. Schedule the node.
std::vector<SUnit*> NotReady;
Sequence.reserve(SUnits.size());
while (!AvailableQueue->empty() || !PendingQueue.empty()) {
// Check to see if any of the pending instructions are ready to issue. If
// so, add them to the available queue.
for (unsigned i = 0, e = PendingQueue.size(); i != e; ++i) {
if (PendingQueue[i]->getDepth() == CurCycle) {
AvailableQueue->push(PendingQueue[i]);
PendingQueue[i]->isAvailable = true;
PendingQueue[i] = PendingQueue.back();
PendingQueue.pop_back();
--i; --e;
}
else {
assert(PendingQueue[i]->getDepth() > CurCycle && "Negative latency?");
}
}
// If there are no instructions available, don't try to issue anything, and
// don't advance the hazard recognizer.
if (AvailableQueue->empty()) {
// Reset DFA state.
AvailableQueue->scheduledNode(0);
++CurCycle;
continue;
}
SUnit *FoundSUnit = 0;
bool HasNoopHazards = false;
while (!AvailableQueue->empty()) {
SUnit *CurSUnit = AvailableQueue->pop();
ScheduleHazardRecognizer::HazardType HT =
HazardRec->getHazardType(CurSUnit, 0/*no stalls*/);
if (HT == ScheduleHazardRecognizer::NoHazard) {
FoundSUnit = CurSUnit;
break;
}
// Remember if this is a noop hazard.
HasNoopHazards |= HT == ScheduleHazardRecognizer::NoopHazard;
NotReady.push_back(CurSUnit);
}
// Add the nodes that aren't ready back onto the available list.
if (!NotReady.empty()) {
AvailableQueue->push_all(NotReady);
NotReady.clear();
}
// If we found a node to schedule, do it now.
if (FoundSUnit) {
scheduleNodeTopDown(FoundSUnit, CurCycle);
HazardRec->EmitInstruction(FoundSUnit);
// If this is a pseudo-op node, we don't want to increment the current
// cycle.
if (FoundSUnit->Latency) // Don't increment CurCycle for pseudo-ops!
++CurCycle;
} else if (!HasNoopHazards) {
// Otherwise, we have a pipeline stall, but no other problem, just advance
// the current cycle and try again.
DEBUG(dbgs() << "*** Advancing cycle, no work to do\n");
HazardRec->AdvanceCycle();
++NumStalls;
++CurCycle;
} else {
// Otherwise, we have no instructions to issue and we have instructions
// that will fault if we don't do this right. This is the case for
// processors without pipeline interlocks and other cases.
DEBUG(dbgs() << "*** Emitting noop\n");
HazardRec->EmitNoop();
Sequence.push_back(0); // NULL here means noop
++NumNoops;
++CurCycle;
}
}
#ifndef NDEBUG
VerifyScheduledSequence(/*isBottomUp=*/false);
#endif
}
//===----------------------------------------------------------------------===//
// Public Constructor Functions
//===----------------------------------------------------------------------===//
/// createVLIWDAGScheduler - This creates a top-down list scheduler.
ScheduleDAGSDNodes *
llvm::createVLIWDAGScheduler(SelectionDAGISel *IS, CodeGenOpt::Level) {
return new ScheduleDAGVLIW(*IS->MF, IS->AA, new ResourcePriorityQueue(IS));
}
>
> Thank you in advance.
>
> Regards,
> Shigio
>
>
> 2015-09-25 9:37 GMT+09:00 rail shafigulin <[email protected]>:
>
>> On Thu, Sep 24, 2015 at 4:08 PM, Shigio YAMAGUCHI <[email protected]> wrote:
>>
>>> Hello,
>>> > I'm navigating through https://github.com/openrisc/llvm-or1k
>>> ...
>>> > Fist and third results are incorrect. They are declarations of these
>>> functions and not the callers.
>>>
>>> Could you show the source code in which the problem has occurred?
>>> This mailing list is recorded in the archive. But we won't know whether
>>> or not the external site exists tomorrow.
>>>
>>
>> Cone the repo from https://github.com/openrisc/llvm-or1k using git
>> cd to llvm-or1k directory
>> execute ctags in this direcotry
>> open vim
>> execute the follwoing commands
>> :cs add CTAGS
>> :cs f c releaseSucc
>> :copen
>>
>> You will see that some of the results are not functions that call a given
>> function, they are function declarations.
>>
>>
>> Thanks
>>
>> > Output also doesn't seem to show what method calls a searched method.
>> > Note: <<releaseSucc>> releaseSucc(SU, *I); It would be nice to have
>> something like
>> > <<ScheduleDAGVLIW::releaseSuccessors(SUnit *SU)>> releaseSucc(SU, *I)
>>
>> That's the present specification.
>> In cscope, ':cs f c' is 'Find functions calling this function:'.
>> But in gtags-cscope, it is 'Find locations calling this function:'.
>>
>> Regards,
>> Shigio
>>
>>
>>> 2015-09-25 3:38 GMT+09:00 rail shafigulin <[email protected]>:
>>>
>>>> I'm navigating through https://github.com/openrisc/llvm-or1k
>>>>
>>>> I've connected the GTAGS database to my Vim using
>>>> :cs add GTAGS
>>>> and set my cscope program to gtags-cscope using
>>>> :set cscopeprg=gtags-cscope
>>>> just like it is stated in the manual.
>>>>
>>>> I've tried to do a caller search for releaseSucc using the following
>>>> command
>>>> :cs f c releaseSucc
>>>>
>>>> The output looked like the following:
>>>>
>>>> llvm-or1k/include/llvm/CodeGen/MachineScheduler.h|335| <<releaseSucc>>
>>>> void releaseSucc(SUnit *SU, SDep *SuccEdge);
>>>> llvm-or1k/lib/CodeGen/MachineScheduler.cpp|539| <<releaseSucc>>
>>>> releaseSucc(SU, &*I);
>>>> llvm-or1k/lib/CodeGen/SelectionDAG/ScheduleDAGVLIW.cpp|86|
>>>> <<releaseSucc>> void releaseSucc(SUnit *SU, const SDep &D);
>>>> llvm-or1k/lib/CodeGen/SelectionDAG/ScheduleDAGVLIW.cpp|146|
>>>> <<releaseSucc>> releaseSucc(SU, *I);
>>>>
>>>> Fist and third results are incorrect. They are declarations of these
>>>> functions and not the callers.
>>>>
>>>> Output also doesn't seem to show what method calls a searched method.
>>>> Note: <<releaseSucc>> releaseSucc(SU, *I); It would be nice to have
>>>> something like <<ScheduleDAGVLIW::releaseSuccessors(SUnit *SU)>>
>>>> releaseSucc(SU, *I)
>>>>
>>>>
>>>> As an additional note:
>>>> It would be nice to give the global tool awareness what function
>>>> callers are being search for. The result above demonstrates that search
>>>> found two methods named releaseSucc, one from ScheduleDAGMI class (2nd
>>>> result) and one from ScheduleDAGVLIW class (4th result). If a user could
>>>> pass information to the global tool stating that the user is looking for
>>>> callers of ScheduleDAGVLIW::rereleaseSucc(...) instead of a caller of <any
>>>> class>::releaseSucc(...), I believe this would be a very good improvement
>>>> of the tool.
>>>>
>>>>
>>>> _______________________________________________
>>>> Bug-global mailing list
>>>> [email protected]
>>>> https://lists.gnu.org/mailman/listinfo/bug-global
>>>>
>>>>
>>>
>>>
>>> --
>>> Shigio YAMAGUCHI <[email protected]>
>>> PGP fingerprint: D1CB 0B89 B346 4AB6 5663 C4B6 3CA5 BBB3 57BE DDA3
>>>
>>
>>
>
>
> --
> Shigio YAMAGUCHI <[email protected]>
> PGP fingerprint: D1CB 0B89 B346 4AB6 5663 C4B6 3CA5 BBB3 57BE DDA3
>
_______________________________________________
Bug-global mailing list
[email protected]
https://lists.gnu.org/mailman/listinfo/bug-global