See 
<https://ci-beam.apache.org/job/beam_LoadTests_Python_Combine_Dataflow_Streaming/1070/display/redirect>

Changes:


------------------------------------------
[...truncated 54.96 KB...]
  Using cached 
charset_normalizer-3.2.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata
 (31 kB)
Collecting idna<4,>=2.5 (from requests<3.0.0,>=2.24.0->apache-beam==2.50.0.dev0)
  Using cached idna-3.4-py3-none-any.whl (61 kB)
Collecting certifi>=2017.4.17 (from 
requests<3.0.0,>=2.24.0->apache-beam==2.50.0.dev0)
  Obtaining dependency information for certifi>=2017.4.17 from 
https://files.pythonhosted.org/packages/4c/dd/2234eab22353ffc7d94e8d13177aaa050113286e93e7b40eae01fbf7c3d9/certifi-2023.7.22-py3-none-any.whl.metadata
  Using cached certifi-2023.7.22-py3-none-any.whl.metadata (2.2 kB)
Collecting scipy>=1.5.0 (from scikit-learn>=0.20.0->apache-beam==2.50.0.dev0)
  Using cached 
scipy-1.10.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (34.5 MB)
Collecting threadpoolctl>=2.0.0 (from 
scikit-learn>=0.20.0->apache-beam==2.50.0.dev0)
  Obtaining dependency information for threadpoolctl>=2.0.0 from 
https://files.pythonhosted.org/packages/81/12/fd4dea011af9d69e1cad05c75f3f7202cdcbeac9b712eea58ca779a72865/threadpoolctl-3.2.0-py3-none-any.whl.metadata
  Using cached threadpoolctl-3.2.0-py3-none-any.whl.metadata (10.0 kB)
Collecting greenlet!=0.4.17 (from 
sqlalchemy<2.0,>=1.3->apache-beam==2.50.0.dev0)
  Obtaining dependency information for greenlet!=0.4.17 from 
https://files.pythonhosted.org/packages/c7/be/6f1924d468b309dd7c3e33c8665286f5ff92ac8ad24fbfa7933f9ddb207e/greenlet-3.0.0a1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata
  Using cached 
greenlet-3.0.0a1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata
 (3.8 kB)
Collecting docker>=4.0.0 (from 
testcontainers[mysql]<4.0.0,>=3.0.3->apache-beam==2.50.0.dev0)
  Obtaining dependency information for docker>=4.0.0 from 
https://files.pythonhosted.org/packages/db/be/3032490fa33b36ddc8c4b1da3252c6f974e7133f1a50de00c6b85cca203a/docker-6.1.3-py3-none-any.whl.metadata
  Using cached docker-6.1.3-py3-none-any.whl.metadata (3.5 kB)
Collecting wrapt (from 
testcontainers[mysql]<4.0.0,>=3.0.3->apache-beam==2.50.0.dev0)
  Using cached 
wrapt-1.15.0-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
 (81 kB)
Collecting deprecation (from 
testcontainers[mysql]<4.0.0,>=3.0.3->apache-beam==2.50.0.dev0)
  Using cached deprecation-2.1.0-py2.py3-none-any.whl (11 kB)
Collecting pymysql (from 
testcontainers[mysql]<4.0.0,>=3.0.3->apache-beam==2.50.0.dev0)
  Obtaining dependency information for pymysql from 
https://files.pythonhosted.org/packages/e5/30/20467e39523d0cfc2b6227902d3687a16364307260c75e6a1cb4422b0c62/PyMySQL-1.1.0-py3-none-any.whl.metadata
  Using cached PyMySQL-1.1.0-py3-none-any.whl.metadata (4.4 kB)
Collecting pycparser (from 
cffi>=1.12->cryptography>=41.0.2->apache-beam==2.50.0.dev0)
  Using cached pycparser-2.21-py2.py3-none-any.whl (118 kB)
Collecting websocket-client>=0.32.0 (from 
docker>=4.0.0->testcontainers[mysql]<4.0.0,>=3.0.3->apache-beam==2.50.0.dev0)
  Obtaining dependency information for websocket-client>=0.32.0 from 
https://files.pythonhosted.org/packages/d3/a3/63e9329c8cc9be6153e919e17d0ef5b60d537fed78564872951b95bcc17c/websocket_client-1.6.1-py3-none-any.whl.metadata
  Using cached websocket_client-1.6.1-py3-none-any.whl.metadata (7.6 kB)
Collecting google-crc32c<2.0dev,>=1.0 (from 
google-resumable-media<3.0dev,>=0.6.0->google-cloud-bigquery<4,>=2.0.0->apache-beam==2.50.0.dev0)
  Using cached 
google_crc32c-1.5.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 
(32 kB)
Collecting PyJWT[crypto]<3,>=1.0.0 (from 
msal<2.0.0,>=1.20.0->azure-identity<2,>=1.12.0->apache-beam==2.50.0.dev0)
  Obtaining dependency information for PyJWT[crypto]<3,>=1.0.0 from 
https://files.pythonhosted.org/packages/2b/4f/e04a8067c7c96c364cef7ef73906504e2f40d690811c021e1a1901473a19/PyJWT-2.8.0-py3-none-any.whl.metadata
  Using cached PyJWT-2.8.0-py3-none-any.whl.metadata (4.2 kB)
Collecting portalocker<3,>=1.0 (from 
msal-extensions<2.0.0,>=0.3.0->azure-identity<2,>=1.12.0->apache-beam==2.50.0.dev0)
  Using cached portalocker-2.7.0-py2.py3-none-any.whl (15 kB)
Collecting pyasn1>=0.1.7 (from 
oauth2client>=1.4.12->google-apitools<0.5.32,>=0.5.31->apache-beam==2.50.0.dev0)
  Using cached pyasn1-0.5.0-py2.py3-none-any.whl (83 kB)
Using cached azure_core-1.28.0-py3-none-any.whl (185 kB)
Using cached azure_identity-1.14.0b2-py3-none-any.whl (154 kB)
Using cached azure_storage_blob-12.17.0-py3-none-any.whl (388 kB)
Using cached boto3-1.28.15-py3-none-any.whl (135 kB)
Using cached cryptography-41.0.2-cp37-abi3-manylinux_2_28_x86_64.whl (4.3 MB)
Using cached 
fastavro-1.8.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.8 MB)
Using cached google_api_core-2.12.0.dev0-py3-none-any.whl (128 kB)
Using cached google_auth-2.22.0-py2.py3-none-any.whl (181 kB)
Using cached google_cloud_aiplatform-1.28.1-py2.py3-none-any.whl (2.7 MB)
Using cached google_cloud_bigquery-3.11.4-py2.py3-none-any.whl (219 kB)
Using cached google_cloud_bigquery_storage-2.22.0-py2.py3-none-any.whl (190 kB)
Using cached google_cloud_bigtable-2.20.0-py2.py3-none-any.whl (293 kB)
Using cached google_cloud_core-2.3.3-py2.py3-none-any.whl (29 kB)
Using cached google_cloud_datastore-2.16.1-py2.py3-none-any.whl (176 kB)
Using cached google_cloud_dlp-3.12.2-py2.py3-none-any.whl (143 kB)
Using cached google_cloud_language-2.10.1-py2.py3-none-any.whl (101 kB)
Using cached google_cloud_pubsub-2.18.1-py2.py3-none-any.whl (265 kB)
Using cached google_cloud_pubsublite-1.8.3-py2.py3-none-any.whl (288 kB)
Using cached google_cloud_recommendations_ai-0.10.4-py2.py3-none-any.whl (173 
kB)
Using cached google_cloud_spanner-3.38.0-py2.py3-none-any.whl (333 kB)
Using cached google_cloud_videointelligence-2.11.3-py2.py3-none-any.whl (229 kB)
Using cached google_cloud_vision-3.4.4-py2.py3-none-any.whl (444 kB)
Using cached hypothesis-6.82.0-py3-none-any.whl (414 kB)
Using cached joblib-1.3.1-py3-none-any.whl (301 kB)
Using cached mock-5.1.0-py3-none-any.whl (30 kB)
Using cached 
orjson-3.9.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (138 kB)
Using cached proto_plus-1.22.3-py3-none-any.whl (48 kB)
Using cached protobuf-4.23.4-cp37-abi3-manylinux2014_x86_64.whl (304 kB)
Using cached 
pymongo-4.4.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (619 kB)
Using cached pytest-7.4.0-py3-none-any.whl (323 kB)
Using cached pytest_xdist-3.3.1-py3-none-any.whl (41 kB)
Using cached 
PyYAML-6.0.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (736 kB)
Using cached 
regex-2023.6.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (772 kB)
Using cached requests-2.31.0-py3-none-any.whl (62 kB)
Using cached requests_mock-1.11.0-py2.py3-none-any.whl (28 kB)
Using cached 
scikit_learn-1.3.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 
(11.1 MB)
Using cached 
SQLAlchemy-1.4.49-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
 (1.6 MB)
Using cached typing_extensions-4.7.1-py3-none-any.whl (33 kB)
Using cached botocore-1.31.15-py3-none-any.whl (11.1 MB)
Using cached certifi-2023.7.22-py3-none-any.whl (158 kB)
Using cached 
charset_normalizer-3.2.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
 (199 kB)
Using cached dnspython-2.4.1-py3-none-any.whl (300 kB)
Using cached docker-6.1.3-py3-none-any.whl (148 kB)
Using cached exceptiongroup-1.1.2-py3-none-any.whl (14 kB)
Using cached execnet-2.0.2-py3-none-any.whl (37 kB)
Using cached google_cloud_resource_manager-1.10.2-py2.py3-none-any.whl (321 kB)
Using cached google_cloud_storage-2.10.0-py2.py3-none-any.whl (114 kB)
Using cached googleapis_common_protos-1.59.1-py2.py3-none-any.whl (224 kB)
Using cached 
greenlet-3.0.0a1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (613 
kB)
Using cached grpcio_status-1.57.0rc1-py3-none-any.whl (5.1 kB)
Using cached msal-1.24.0b1-py2.py3-none-any.whl (90 kB)
Using cached pyparsing-3.1.0-py3-none-any.whl (102 kB)
Using cached threadpoolctl-3.2.0-py3-none-any.whl (15 kB)
Using cached urllib3-1.26.16-py2.py3-none-any.whl (143 kB)
Using cached PyMySQL-1.1.0-py3-none-any.whl (44 kB)
Using cached websocket_client-1.6.1-py3-none-any.whl (56 kB)
Using cached PyJWT-2.8.0-py3-none-any.whl (22 kB)
Building wheels for collected packages: apache-beam
  Building wheel for apache-beam (setup.py): started
  Building wheel for apache-beam (setup.py): finished with status 'done'
  Created wheel for apache-beam: 
filename=apache_beam-2.50.0.dev0-py3-none-any.whl size=3252728 
sha256=5cae20af512c7cf1082e77e4258f77db8e3e4d4faafac3371cedf4f93234c746
  Stored in directory: 
/home/jenkins/.cache/pip/wheels/67/34/b8/5adce605a0a3f10491be234729fa4854c6a127bc01194f13fc
Successfully built apache-beam
Installing collected packages: sortedcontainers, pytz, docopt, crcmod, 
zstandard, wrapt, websocket-client, urllib3, typing-extensions, threadpoolctl, 
tenacity, sqlparse, six, shapely, scipy, regex, pyyaml, pyparsing, pymysql, 
PyJWT, pyhamcrest, pycparser, pyasn1, pyarrow, psycopg2-binary, protobuf, 
portalocker, parameterized, overrides, orjson, objsize, mock, joblib, jmespath, 
iniconfig, idna, greenlet, google-crc32c, fasteners, fastavro, execnet, 
exceptiongroup, dnspython, dill, deprecation, cloudpickle, charset-normalizer, 
certifi, attrs, sqlalchemy, scikit-learn, rsa, requests, python-dateutil, 
pytest, pymongo, pydot, pyasn1-modules, proto-plus, isodate, hypothesis, 
httplib2, googleapis-common-protos, google-resumable-media, cffi, 
requests_mock, pytest-xdist, pytest-timeout, pandas, oauth2client, hdfs, 
grpcio-status, google-auth, freezegun, docker, cryptography, botocore, 
azure-core, testcontainers, s3transfer, grpc-google-iam-v1, 
google-auth-httplib2, google-apitools, google-api-core, azure-storage-blob, 
apache-beam, msal, google-cloud-core, boto3, msal-extensions, 
google-cloud-vision, google-cloud-videointelligence, google-cloud-storage, 
google-cloud-spanner, google-cloud-resource-manager, 
google-cloud-recommendations-ai, google-cloud-pubsub, google-cloud-language, 
google-cloud-dlp, google-cloud-datastore, google-cloud-bigtable, 
google-cloud-bigquery-storage, google-cloud-bigquery, google-cloud-pubsublite, 
google-cloud-aiplatform, azure-identity
  Attempting uninstall: protobuf
    Found existing installation: protobuf 4.24.0rc2
    Uninstalling protobuf-4.24.0rc2:
      Successfully uninstalled protobuf-4.24.0rc2
Successfully installed PyJWT-2.8.0 apache-beam-2.50.0.dev0 attrs-23.1.0 
azure-core-1.28.0 azure-identity-1.14.0b2 azure-storage-blob-12.17.0 
boto3-1.28.15 botocore-1.31.15 certifi-2023.7.22 cffi-1.15.1 
charset-normalizer-3.2.0 cloudpickle-2.2.1 crcmod-1.7 cryptography-41.0.2 
deprecation-2.1.0 dill-0.3.1.1 dnspython-2.4.1 docker-6.1.3 docopt-0.6.2 
exceptiongroup-1.1.2 execnet-2.0.2 fastavro-1.8.2 fasteners-0.18 
freezegun-1.2.2 google-api-core-2.12.0.dev0 google-apitools-0.5.31 
google-auth-2.22.0 google-auth-httplib2-0.1.0 google-cloud-aiplatform-1.28.1 
google-cloud-bigquery-3.11.4 google-cloud-bigquery-storage-2.22.0 
google-cloud-bigtable-2.20.0 google-cloud-core-2.3.3 
google-cloud-datastore-2.16.1 google-cloud-dlp-3.12.2 
google-cloud-language-2.10.1 google-cloud-pubsub-2.18.1 
google-cloud-pubsublite-1.8.3 google-cloud-recommendations-ai-0.10.4 
google-cloud-resource-manager-1.10.2 google-cloud-spanner-3.38.0 
google-cloud-storage-2.10.0 google-cloud-videointelligence-2.11.3 
google-cloud-vision-3.4.4 google-crc32c-1.5.0 google-resumable-media-2.5.0 
googleapis-common-protos-1.59.1 greenlet-3.0.0a1 grpc-google-iam-v1-0.12.6 
grpcio-status-1.57.0rc1 hdfs-2.7.0 httplib2-0.22.0 hypothesis-6.82.0 idna-3.4 
iniconfig-2.0.0 isodate-0.6.1 jmespath-1.0.1 joblib-1.3.1 mock-5.1.0 
msal-1.24.0b1 msal-extensions-1.0.0 oauth2client-4.1.3 objsize-0.6.1 
orjson-3.9.2 overrides-6.5.0 pandas-1.5.3 parameterized-0.9.0 portalocker-2.7.0 
proto-plus-1.22.3 protobuf-4.23.4 psycopg2-binary-2.9.6 pyarrow-11.0.0 
pyasn1-0.5.0 pyasn1-modules-0.3.0 pycparser-2.21 pydot-1.4.2 pyhamcrest-2.0.4 
pymongo-4.4.1 pymysql-1.1.0 pyparsing-3.1.0 pytest-7.4.0 pytest-timeout-2.1.0 
pytest-xdist-3.3.1 python-dateutil-2.8.2 pytz-2023.3 pyyaml-6.0.1 
regex-2023.6.3 requests-2.31.0 requests_mock-1.11.0 rsa-4.9 s3transfer-0.6.1 
scikit-learn-1.3.0 scipy-1.10.1 shapely-1.8.5.post1 six-1.16.0 
sortedcontainers-2.4.0 sqlalchemy-1.4.49 sqlparse-0.4.4 tenacity-8.2.2 
testcontainers-3.7.1 threadpoolctl-3.2.0 typing-extensions-4.7.1 
urllib3-1.26.16 websocket-client-1.6.1 wrapt-1.15.0 zstandard-0.21.0

> Task :sdks:python:apache_beam:testing:load_tests:run
INFO:apache_beam.runners.portability.stager:Copying Beam SDK 
"<https://ci-beam.apache.org/job/beam_LoadTests_Python_Combine_Dataflow_Streaming/ws/src/sdks/python/build/apache-beam.tar.gz";>
 to staging location.
INFO:apache_beam.runners.dataflow.dataflow_runner:Pipeline has additional 
dependencies to be installed in SDK **** container, consider using the SDK 
container image pre-building workflow to avoid repetitive installations. Learn 
more on 
https://cloud.google.com/dataflow/docs/guides/using-custom-containers#prebuild
INFO:root:Using provided Python SDK container image: 
gcr.io/cloud-dataflow/v1beta3/beam_python3.8_sdk:beam-master-20230717
INFO:root:Python SDK container image set to 
"gcr.io/cloud-dataflow/v1beta3/beam_python3.8_sdk:beam-master-20230717" for 
Docker environment
INFO:apache_beam.runners.dataflow.internal.apiclient:Defaulting to the 
temp_location as staging_location: gs://temp-storage-for-perf-tests/smoketests
INFO:apache_beam.internal.gcp.auth:Setting socket default timeout to 60 seconds.
INFO:apache_beam.internal.gcp.auth:socket default timeout is 60.0 seconds.
INFO:apache_beam.runners.dataflow.internal.apiclient:Starting GCS upload to 
gs://temp-storage-for-perf-tests/smoketests/load-tests-python-dataflow-streaming-combine-1-0729125344.1690643269.638100/dataflow_python_sdk.tar...
INFO:apache_beam.runners.dataflow.internal.apiclient:Completed GCS upload to 
gs://temp-storage-for-perf-tests/smoketests/load-tests-python-dataflow-streaming-combine-1-0729125344.1690643269.638100/dataflow_python_sdk.tar
 in 0 seconds.
INFO:apache_beam.runners.dataflow.internal.apiclient:Starting GCS upload to 
gs://temp-storage-for-perf-tests/smoketests/load-tests-python-dataflow-streaming-combine-1-0729125344.1690643269.638100/pipeline.pb...
INFO:apache_beam.runners.dataflow.internal.apiclient:Completed GCS upload to 
gs://temp-storage-for-perf-tests/smoketests/load-tests-python-dataflow-streaming-combine-1-0729125344.1690643269.638100/pipeline.pb
 in 0 seconds.
INFO:apache_beam.runners.dataflow.internal.apiclient:Create job: <Job
 clientRequestId: '20230729150749639060-2323'
 createTime: '2023-07-29T15:07:50.935767Z'
 currentStateTime: '1970-01-01T00:00:00Z'
 id: '2023-07-29_08_07_49-3071323599155426221'
 location: 'us-central1'
 name: 'load-tests-python-dataflow-streaming-combine-1-0729125344'
 projectId: 'apache-beam-testing'
 stageStates: []
 startTime: '2023-07-29T15:07:50.935767Z'
 steps: []
 tempFiles: []
 type: TypeValueValuesEnum(JOB_TYPE_STREAMING, 2)>
INFO:apache_beam.runners.dataflow.internal.apiclient:Created job with id: 
[2023-07-29_08_07_49-3071323599155426221]
INFO:apache_beam.runners.dataflow.internal.apiclient:Submitted job: 
2023-07-29_08_07_49-3071323599155426221
INFO:apache_beam.runners.dataflow.internal.apiclient:To access the Dataflow 
monitoring console, please navigate to 
https://console.cloud.google.com/dataflow/jobs/us-central1/2023-07-29_08_07_49-3071323599155426221?project=apache-beam-testing
INFO:apache_beam.runners.dataflow.dataflow_runner:Job 
2023-07-29_08_07_49-3071323599155426221 is in state JOB_STATE_PENDING
INFO:apache_beam.runners.dataflow.dataflow_runner:2023-07-29T15:07:55.399Z: 
JOB_MESSAGE_BASIC: Worker configuration: e2-standard-2 in us-central1-b.
INFO:apache_beam.runners.dataflow.dataflow_runner:2023-07-29T15:07:56.731Z: 
JOB_MESSAGE_DETAILED: Expanding SplittableParDo operations into optimizable 
parts.
INFO:apache_beam.runners.dataflow.dataflow_runner:2023-07-29T15:07:56.752Z: 
JOB_MESSAGE_DETAILED: Expanding CollectionToSingleton operations into 
optimizable parts.
INFO:apache_beam.runners.dataflow.dataflow_runner:2023-07-29T15:07:56.811Z: 
JOB_MESSAGE_DETAILED: Expanding CoGroupByKey operations into optimizable parts.
INFO:apache_beam.runners.dataflow.dataflow_runner:2023-07-29T15:07:56.868Z: 
JOB_MESSAGE_DETAILED: Expanding SplittableProcessKeyed operations into 
optimizable parts.
INFO:apache_beam.runners.dataflow.dataflow_runner:2023-07-29T15:07:56.891Z: 
JOB_MESSAGE_DETAILED: Expanding GroupByKey operations into streaming Read/Write 
steps
INFO:apache_beam.runners.dataflow.dataflow_runner:2023-07-29T15:07:56.934Z: 
JOB_MESSAGE_DETAILED: Lifting ValueCombiningMappingFns into 
MergeBucketsMappingFns
INFO:apache_beam.runners.dataflow.dataflow_runner:2023-07-29T15:07:56.981Z: 
JOB_MESSAGE_DEBUG: Annotating graph with Autotuner information.
INFO:apache_beam.runners.dataflow.dataflow_runner:2023-07-29T15:07:57.020Z: 
JOB_MESSAGE_DETAILED: Fusing adjacent ParDo, Read, Write, and Flatten operations
INFO:apache_beam.runners.dataflow.dataflow_runner:2023-07-29T15:07:57.043Z: 
JOB_MESSAGE_DETAILED: Fusing consumer Read synthetic/Map(<lambda at 
iobase.py:911>) into Read synthetic/Impulse
INFO:apache_beam.runners.dataflow.dataflow_runner:2023-07-29T15:07:57.065Z: 
JOB_MESSAGE_DETAILED: Fusing consumer 
ref_AppliedPTransform_Read-synthetic-SDFBoundedSourceReader-ParDo-SDFBoundedSourceDoFn-_6/PairWithRestriction
 into Read synthetic/Map(<lambda at iobase.py:911>)
INFO:apache_beam.runners.dataflow.dataflow_runner:2023-07-29T15:07:57.088Z: 
JOB_MESSAGE_DETAILED: Fusing consumer 
ref_AppliedPTransform_Read-synthetic-SDFBoundedSourceReader-ParDo-SDFBoundedSourceDoFn-_6/SplitWithSizing
 into 
ref_AppliedPTransform_Read-synthetic-SDFBoundedSourceReader-ParDo-SDFBoundedSourceDoFn-_6/PairWithRestriction
INFO:apache_beam.runners.dataflow.dataflow_runner:2023-07-29T15:07:57.111Z: 
JOB_MESSAGE_DETAILED: Fusing consumer Measure time: Start into 
ref_AppliedPTransform_Read-synthetic-SDFBoundedSourceReader-ParDo-SDFBoundedSourceDoFn-_6/ProcessElementAndRestrictionWithSizing
INFO:apache_beam.runners.dataflow.dataflow_runner:2023-07-29T15:07:57.136Z: 
JOB_MESSAGE_DETAILED: Fusing consumer Combine with Top 0/KeyWithVoid into 
Measure time: Start
INFO:apache_beam.runners.dataflow.dataflow_runner:2023-07-29T15:07:57.160Z: 
JOB_MESSAGE_DETAILED: Fusing consumer Combine with Top 
0/CombinePerKey/Combine/ConvertToAccumulators into Combine with Top 
0/KeyWithVoid
INFO:apache_beam.runners.dataflow.dataflow_runner:2023-07-29T15:07:57.184Z: 
JOB_MESSAGE_DETAILED: Fusing consumer Combine with Top 
0/CombinePerKey/GroupByKey/WriteStream into Combine with Top 
0/CombinePerKey/Combine/ConvertToAccumulators
INFO:apache_beam.runners.dataflow.dataflow_runner:2023-07-29T15:07:57.208Z: 
JOB_MESSAGE_DETAILED: Fusing consumer Combine with Top 0/CombinePerKey/Combine 
into Combine with Top 0/CombinePerKey/GroupByKey/ReadStream
INFO:apache_beam.runners.dataflow.dataflow_runner:2023-07-29T15:07:57.233Z: 
JOB_MESSAGE_DETAILED: Fusing consumer Combine with Top 
0/CombinePerKey/Combine/Extract into Combine with Top 0/CombinePerKey/Combine
INFO:apache_beam.runners.dataflow.dataflow_runner:2023-07-29T15:07:57.255Z: 
JOB_MESSAGE_DETAILED: Fusing consumer Combine with Top 0/UnKey into Combine 
with Top 0/CombinePerKey/Combine/Extract
INFO:apache_beam.runners.dataflow.dataflow_runner:2023-07-29T15:07:57.280Z: 
JOB_MESSAGE_DETAILED: Fusing consumer Consume 0 into Combine with Top 0/UnKey
INFO:apache_beam.runners.dataflow.dataflow_runner:2023-07-29T15:07:57.299Z: 
JOB_MESSAGE_DETAILED: Fusing consumer Measure time: End 0 into Consume 0
INFO:apache_beam.runners.dataflow.dataflow_runner:2023-07-29T15:07:57.384Z: 
JOB_MESSAGE_DEBUG: Workflow config is missing a default resource spec.
INFO:apache_beam.runners.dataflow.dataflow_runner:2023-07-29T15:07:57.406Z: 
JOB_MESSAGE_DEBUG: Adding StepResource setup and teardown to workflow graph.
INFO:apache_beam.runners.dataflow.dataflow_runner:2023-07-29T15:07:57.429Z: 
JOB_MESSAGE_BASIC: Running job using Streaming Engine
INFO:apache_beam.runners.dataflow.dataflow_runner:2023-07-29T15:07:57.455Z: 
JOB_MESSAGE_DEBUG: Adding workflow start and stop steps.
INFO:apache_beam.runners.dataflow.dataflow_runner:2023-07-29T15:07:57.473Z: 
JOB_MESSAGE_DEBUG: Assigning stage ids.
INFO:apache_beam.runners.dataflow.dataflow_runner:2023-07-29T15:07:57.658Z: 
JOB_MESSAGE_DEBUG: Starting **** pool setup.
INFO:apache_beam.runners.dataflow.dataflow_runner:2023-07-29T15:07:57.679Z: 
JOB_MESSAGE_BASIC: Starting 5 ****s in us-central1-b...
INFO:apache_beam.runners.dataflow.dataflow_runner:2023-07-29T15:07:57.721Z: 
JOB_MESSAGE_DEBUG: Starting **** pool setup.
INFO:apache_beam.runners.dataflow.dataflow_runner:Job 
2023-07-29_08_07_49-3071323599155426221 is in state JOB_STATE_RUNNING
INFO:apache_beam.runners.dataflow.dataflow_runner:2023-07-29T15:08:26.181Z: 
JOB_MESSAGE_BASIC: Your project already contains 100 Dataflow-created metric 
descriptors, so new user metrics of the form custom.googleapis.com/* will not 
be created. However, all user metrics are also available in the metric 
dataflow.googleapis.com/job/user_counter. If you rely on the custom metrics, 
you can delete old / unused metric descriptors. See 
https://developers.google.com/apis-explorer/#p/monitoring/v3/monitoring.projects.metricDescriptors.list
 and 
https://developers.google.com/apis-explorer/#p/monitoring/v3/monitoring.projects.metricDescriptors.delete
INFO:apache_beam.runners.dataflow.dataflow_runner:2023-07-29T15:08:41.660Z: 
JOB_MESSAGE_DETAILED: Autoscaling: Raised the number of ****s to 1 so that the 
pipeline can catch up with its backlog and keep up with its input rate.
INFO:apache_beam.runners.dataflow.dataflow_runner:2023-07-29T15:08:41.685Z: 
JOB_MESSAGE_DETAILED: Autoscaling: Resized **** pool to 1, though goal was 5.  
This could be a quota issue.
INFO:apache_beam.runners.dataflow.dataflow_runner:2023-07-29T15:08:50.940Z: 
JOB_MESSAGE_DETAILED: Autoscaling: Raised the number of ****s to 3 so that the 
pipeline can catch up with its backlog and keep up with its input rate.
INFO:apache_beam.runners.dataflow.dataflow_runner:2023-07-29T15:08:50.964Z: 
JOB_MESSAGE_DETAILED: Autoscaling: Resized **** pool to 3, though goal was 5.  
This could be a quota issue.
INFO:apache_beam.runners.dataflow.dataflow_runner:2023-07-29T15:09:00.924Z: 
JOB_MESSAGE_DETAILED: Autoscaling: Raised the number of ****s to 5 so that the 
pipeline can catch up with its backlog and keep up with its input rate.
INFO:apache_beam.runners.dataflow.dataflow_runner:2023-07-29T15:09:18.148Z: 
JOB_MESSAGE_DETAILED: Workers have started successfully.
INFO:apache_beam.runners.dataflow.dataflow_runner:2023-07-29T15:09:30.027Z: 
JOB_MESSAGE_DETAILED: All ****s have finished the startup processes and began 
to receive work requests.
INFO:apache_beam.runners.dataflow.dataflow_runner:2023-07-29T15:40:53.005Z: 
JOB_MESSAGE_DETAILED: Autoscaling: Raised the number of ****s to 5 so that the 
pipeline can catch up with its backlog and keep up with its input rate.
INFO:apache_beam.runners.dataflow.dataflow_runner:2023-07-29T15:41:56.997Z: 
JOB_MESSAGE_DETAILED: Autoscaling: Raised the number of ****s to 5 so that the 
pipeline can catch up with its backlog and keep up with its input rate.
INFO:apache_beam.runners.dataflow.dataflow_runner:2023-07-29T16:11:55.542Z: 
JOB_MESSAGE_DETAILED: Autoscaling: Raised the number of ****s to 5 so that the 
pipeline can catch up with its backlog and keep up with its input rate.
INFO:apache_beam.runners.dataflow.dataflow_runner:2023-07-29T16:12:58.067Z: 
JOB_MESSAGE_DETAILED: Autoscaling: Raised the number of ****s to 5 so that the 
pipeline can catch up with its backlog and keep up with its input rate.
INFO:apache_beam.runners.dataflow.dataflow_runner:2023-07-29T16:37:01.212Z: 
JOB_MESSAGE_DETAILED: Autoscaling: Raised the number of ****s to 5 so that the 
pipeline can catch up with its backlog and keep up with its input rate.
INFO:apache_beam.runners.dataflow.dataflow_runner:2023-07-29T16:45:02.723Z: 
JOB_MESSAGE_DETAILED: Autoscaling: Raised the number of ****s to 5 so that the 
pipeline can catch up with its backlog and keep up with its input rate.
INFO:apache_beam.runners.dataflow.dataflow_runner:2023-07-29T17:04:01.832Z: 
JOB_MESSAGE_DETAILED: Autoscaling: Raised the number of ****s to 5 so that the 
pipeline can catch up with its backlog and keep up with its input rate.
INFO:apache_beam.runners.dataflow.dataflow_runner:2023-07-29T17:09:13.895Z: 
JOB_MESSAGE_DETAILED: Autoscaling: Raised the number of ****s to 5 so that the 
pipeline can catch up with its backlog and keep up with its input rate.
INFO:apache_beam.runners.dataflow.dataflow_runner:2023-07-29T17:41:06.230Z: 
JOB_MESSAGE_DETAILED: Autoscaling: Raised the number of ****s to 5 so that the 
pipeline can catch up with its backlog and keep up with its input rate.
INFO:apache_beam.runners.dataflow.dataflow_runner:2023-07-29T17:59:07.790Z: 
JOB_MESSAGE_DETAILED: Autoscaling: Raised the number of ****s to 5 so that the 
pipeline can catch up with its backlog and keep up with its input rate.
INFO:apache_beam.runners.dataflow.dataflow_runner:2023-07-29T18:10:10.467Z: 
JOB_MESSAGE_DETAILED: Autoscaling: Raised the number of ****s to 5 so that the 
pipeline can catch up with its backlog and keep up with its input rate.
INFO:apache_beam.runners.dataflow.dataflow_runner:2023-07-29T18:11:12.783Z: 
JOB_MESSAGE_DETAILED: Autoscaling: Raised the number of ****s to 5 so that the 
pipeline can catch up with its backlog and keep up with its input rate.
INFO:apache_beam.runners.dataflow.dataflow_runner:2023-07-29T18:23:15.092Z: 
JOB_MESSAGE_DETAILED: Autoscaling: Raised the number of ****s to 5 so that the 
pipeline can catch up with its backlog and keep up with its input rate.
INFO:apache_beam.runners.dataflow.dataflow_runner:2023-07-29T18:34:17.856Z: 
JOB_MESSAGE_DETAILED: Autoscaling: Raised the number of ****s to 5 so that the 
pipeline can catch up with its backlog and keep up with its input rate.
INFO:apache_beam.runners.dataflow.dataflow_runner:2023-07-29T18:42:29.734Z: 
JOB_MESSAGE_DETAILED: Autoscaling: Raised the number of ****s to 5 so that the 
pipeline can catch up with its backlog and keep up with its input rate.
INFO:apache_beam.runners.dataflow.dataflow_runner:2023-07-29T18:53:18.095Z: 
JOB_MESSAGE_DETAILED: Autoscaling: Raised the number of ****s to 5 so that the 
pipeline can catch up with its backlog and keep up with its input rate.
INFO:apache_beam.runners.dataflow.dataflow_runner:2023-07-29T19:03:20.491Z: 
JOB_MESSAGE_DETAILED: Autoscaling: Raised the number of ****s to 5 so that the 
pipeline can catch up with its backlog and keep up with its input rate.
INFO:apache_beam.runners.dataflow.dataflow_runner:2023-07-29T19:11:22.067Z: 
JOB_MESSAGE_DETAILED: Autoscaling: Raised the number of ****s to 5 so that the 
pipeline can catch up with its backlog and keep up with its input rate.
INFO:apache_beam.runners.dataflow.dataflow_runner:2023-07-29T19:21:23.737Z: 
JOB_MESSAGE_DETAILED: Autoscaling: Raised the number of ****s to 5 so that the 
pipeline can catch up with its backlog and keep up with its input rate.
INFO:apache_beam.runners.dataflow.dataflow_runner:2023-07-29T19:31:26.183Z: 
JOB_MESSAGE_DETAILED: Autoscaling: Raised the number of ****s to 5 so that the 
pipeline can catch up with its backlog and keep up with its input rate.
INFO:apache_beam.runners.dataflow.dataflow_runner:2023-07-29T19:40:27.524Z: 
JOB_MESSAGE_DETAILED: Autoscaling: Raised the number of ****s to 5 so that the 
pipeline can catch up with its backlog and keep up with its input rate.
INFO:apache_beam.runners.dataflow.dataflow_runner:2023-07-29T19:44:28.850Z: 
JOB_MESSAGE_DETAILED: Autoscaling: Raised the number of ****s to 5 so that the 
pipeline can catch up with its backlog and keep up with its input rate.
INFO:apache_beam.runners.dataflow.dataflow_runner:2023-07-29T19:59:30.910Z: 
JOB_MESSAGE_DETAILED: Autoscaling: Raised the number of ****s to 5 so that the 
pipeline can catch up with its backlog and keep up with its input rate.
INFO:apache_beam.runners.dataflow.dataflow_runner:Job 
2023-07-29_08_07_49-3071323599155426221 is in state JOB_STATE_CANCELLING
INFO:apache_beam.runners.dataflow.dataflow_runner:2023-07-29T20:00:59.882Z: 
JOB_MESSAGE_BASIC: Cancel request is committed for workflow job: 
2023-07-29_08_07_49-3071323599155426221.
INFO:apache_beam.runners.dataflow.dataflow_runner:2023-07-29T20:00:59.913Z: 
JOB_MESSAGE_DETAILED: Cleaning up.
INFO:apache_beam.runners.dataflow.dataflow_runner:2023-07-29T20:00:59.960Z: 
JOB_MESSAGE_DEBUG: Starting **** pool teardown.
INFO:apache_beam.runners.dataflow.dataflow_runner:2023-07-29T20:00:59.981Z: 
JOB_MESSAGE_BASIC: Stopping **** pool...
INFO:apache_beam.runners.dataflow.dataflow_runner:2023-07-29T20:01:00.007Z: 
JOB_MESSAGE_DEBUG: Starting **** pool teardown.
INFO:apache_beam.runners.dataflow.dataflow_runner:2023-07-29T20:01:00.030Z: 
JOB_MESSAGE_BASIC: Stopping **** pool...
Traceback (most recent call last):
  File "/usr/lib/python3.8/runpy.py", line 194, in _run_module_as_main
    return _run_code(code, main_globals, None,
  File "/usr/lib/python3.8/runpy.py", line 87, in _run_code
    exec(code, run_globals)
  File 
"<https://ci-beam.apache.org/job/beam_LoadTests_Python_Combine_Dataflow_Streaming/ws/src/sdks/python/apache_beam/testing/load_tests/combine_test.py";,>
 line 129, in <module>
    CombineTest().run()
  File 
"<https://ci-beam.apache.org/job/beam_LoadTests_Python_Combine_Dataflow_Streaming/ws/src/sdks/python/apache_beam/testing/load_tests/load_test.py";,>
 line 152, in run
    state = self.result.wait_until_finish(duration=self.timeout_ms)
  File 
"<https://ci-beam.apache.org/job/beam_LoadTests_Python_Combine_Dataflow_Streaming/ws/src/sdks/python/apache_beam/runners/dataflow/dataflow_runner.py";,>
 line 748, in wait_until_finish
    assert duration or terminated, (
AssertionError: Job did not reach to a terminal state after waiting 
indefinitely. Console URL: 
https://console.cloud.google.com/dataflow/jobs/<RegionId>/2023-07-29_08_07_49-3071323599155426221?project=<ProjectId>

> Task :sdks:python:apache_beam:testing:load_tests:run FAILED

FAILURE: Build failed with an exception.

* Where:
Build file 
'<https://ci-beam.apache.org/job/beam_LoadTests_Python_Combine_Dataflow_Streaming/ws/src/sdks/python/apache_beam/testing/load_tests/build.gradle'>
 line: 63

* What went wrong:
Execution failed for task ':sdks:python:apache_beam:testing:load_tests:run'.
> error occurred

* Try:
> Run with --stacktrace option to get the stack trace.
> Run with --info or --debug option to get more log output.

* Get more help at https://help.gradle.org

Deprecated Gradle features were used in this build, making it incompatible with 
Gradle 8.0.

You can use '--warning-mode all' to show the individual deprecation warnings 
and determine if they come from your own scripts or plugins.

See 
https://docs.gradle.org/7.6.2/userguide/command_line_interface.html#sec:command_line_warnings

BUILD FAILED in 4h 55m 25s
15 actionable tasks: 9 executed, 4 from cache, 2 up-to-date

Publishing build scan...
https://ge.apache.org/s/f2auxh6pfxtks

Build step 'Invoke Gradle script' changed build result to FAILURE
Build step 'Invoke Gradle script' marked build as failure

---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]

Reply via email to