See <https://ci-beam.apache.org/job/beam_LoadTests_Python_Combine_Dataflow_Streaming/1073/display/redirect>
Changes: ------------------------------------------ [...truncated 55.49 KB...] Obtaining dependency information for charset-normalizer<4,>=2 from https://files.pythonhosted.org/packages/cb/e7/5e43745003bf1f90668c7be23fc5952b3a2b9c2558f16749411c18039b36/charset_normalizer-3.2.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata Using cached charset_normalizer-3.2.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (31 kB) Collecting idna<4,>=2.5 (from requests<3.0.0,>=2.24.0->apache-beam==2.50.0.dev0) Using cached idna-3.4-py3-none-any.whl (61 kB) Collecting certifi>=2017.4.17 (from requests<3.0.0,>=2.24.0->apache-beam==2.50.0.dev0) Obtaining dependency information for certifi>=2017.4.17 from https://files.pythonhosted.org/packages/4c/dd/2234eab22353ffc7d94e8d13177aaa050113286e93e7b40eae01fbf7c3d9/certifi-2023.7.22-py3-none-any.whl.metadata Using cached certifi-2023.7.22-py3-none-any.whl.metadata (2.2 kB) Collecting scipy>=1.5.0 (from scikit-learn>=0.20.0->apache-beam==2.50.0.dev0) Using cached scipy-1.10.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (34.5 MB) Collecting threadpoolctl>=2.0.0 (from scikit-learn>=0.20.0->apache-beam==2.50.0.dev0) Obtaining dependency information for threadpoolctl>=2.0.0 from https://files.pythonhosted.org/packages/81/12/fd4dea011af9d69e1cad05c75f3f7202cdcbeac9b712eea58ca779a72865/threadpoolctl-3.2.0-py3-none-any.whl.metadata Using cached threadpoolctl-3.2.0-py3-none-any.whl.metadata (10.0 kB) Collecting greenlet!=0.4.17 (from sqlalchemy<2.0,>=1.3->apache-beam==2.50.0.dev0) Obtaining dependency information for greenlet!=0.4.17 from https://files.pythonhosted.org/packages/c7/be/6f1924d468b309dd7c3e33c8665286f5ff92ac8ad24fbfa7933f9ddb207e/greenlet-3.0.0a1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata Using cached greenlet-3.0.0a1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (3.8 kB) Collecting docker>=4.0.0 (from testcontainers[mysql]<4.0.0,>=3.0.3->apache-beam==2.50.0.dev0) Obtaining dependency information for docker>=4.0.0 from https://files.pythonhosted.org/packages/db/be/3032490fa33b36ddc8c4b1da3252c6f974e7133f1a50de00c6b85cca203a/docker-6.1.3-py3-none-any.whl.metadata Using cached docker-6.1.3-py3-none-any.whl.metadata (3.5 kB) Collecting wrapt (from testcontainers[mysql]<4.0.0,>=3.0.3->apache-beam==2.50.0.dev0) Using cached wrapt-1.15.0-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (81 kB) Collecting deprecation (from testcontainers[mysql]<4.0.0,>=3.0.3->apache-beam==2.50.0.dev0) Using cached deprecation-2.1.0-py2.py3-none-any.whl (11 kB) Collecting pymysql (from testcontainers[mysql]<4.0.0,>=3.0.3->apache-beam==2.50.0.dev0) Obtaining dependency information for pymysql from https://files.pythonhosted.org/packages/e5/30/20467e39523d0cfc2b6227902d3687a16364307260c75e6a1cb4422b0c62/PyMySQL-1.1.0-py3-none-any.whl.metadata Using cached PyMySQL-1.1.0-py3-none-any.whl.metadata (4.4 kB) Collecting pycparser (from cffi>=1.12->cryptography>=41.0.2->apache-beam==2.50.0.dev0) Using cached pycparser-2.21-py2.py3-none-any.whl (118 kB) Collecting websocket-client>=0.32.0 (from docker>=4.0.0->testcontainers[mysql]<4.0.0,>=3.0.3->apache-beam==2.50.0.dev0) Obtaining dependency information for websocket-client>=0.32.0 from https://files.pythonhosted.org/packages/d3/a3/63e9329c8cc9be6153e919e17d0ef5b60d537fed78564872951b95bcc17c/websocket_client-1.6.1-py3-none-any.whl.metadata Using cached websocket_client-1.6.1-py3-none-any.whl.metadata (7.6 kB) Collecting google-crc32c<2.0dev,>=1.0 (from google-resumable-media<3.0dev,>=0.6.0->google-cloud-bigquery<4,>=2.0.0->apache-beam==2.50.0.dev0) Using cached google_crc32c-1.5.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (32 kB) Collecting PyJWT[crypto]<3,>=1.0.0 (from msal<2.0.0,>=1.20.0->azure-identity<2,>=1.12.0->apache-beam==2.50.0.dev0) Obtaining dependency information for PyJWT[crypto]<3,>=1.0.0 from https://files.pythonhosted.org/packages/2b/4f/e04a8067c7c96c364cef7ef73906504e2f40d690811c021e1a1901473a19/PyJWT-2.8.0-py3-none-any.whl.metadata Using cached PyJWT-2.8.0-py3-none-any.whl.metadata (4.2 kB) Collecting portalocker<3,>=1.0 (from msal-extensions<2.0.0,>=0.3.0->azure-identity<2,>=1.12.0->apache-beam==2.50.0.dev0) Using cached portalocker-2.7.0-py2.py3-none-any.whl (15 kB) Collecting pyasn1>=0.1.7 (from oauth2client>=1.4.12->google-apitools<0.5.32,>=0.5.31->apache-beam==2.50.0.dev0) Using cached pyasn1-0.5.0-py2.py3-none-any.whl (83 kB) Using cached azure_core-1.28.0-py3-none-any.whl (185 kB) Using cached azure_identity-1.14.0b2-py3-none-any.whl (154 kB) Using cached azure_storage_blob-12.17.0-py3-none-any.whl (388 kB) Using cached boto3-1.28.16-py3-none-any.whl (135 kB) Using cached cryptography-41.0.2-cp37-abi3-manylinux_2_28_x86_64.whl (4.3 MB) Using cached fastavro-1.8.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.8 MB) Using cached google_api_core-2.12.0.dev0-py3-none-any.whl (128 kB) Using cached google_auth-2.22.0-py2.py3-none-any.whl (181 kB) Using cached google_cloud_aiplatform-1.28.1-py2.py3-none-any.whl (2.7 MB) Using cached google_cloud_bigquery-3.11.4-py2.py3-none-any.whl (219 kB) Using cached google_cloud_bigquery_storage-2.22.0-py2.py3-none-any.whl (190 kB) Using cached google_cloud_bigtable-2.20.0-py2.py3-none-any.whl (293 kB) Using cached google_cloud_core-2.3.3-py2.py3-none-any.whl (29 kB) Using cached google_cloud_datastore-2.16.1-py2.py3-none-any.whl (176 kB) Using cached google_cloud_dlp-3.12.2-py2.py3-none-any.whl (143 kB) Using cached google_cloud_language-2.10.1-py2.py3-none-any.whl (101 kB) Using cached google_cloud_pubsub-2.18.1-py2.py3-none-any.whl (265 kB) Using cached google_cloud_pubsublite-1.8.3-py2.py3-none-any.whl (288 kB) Using cached google_cloud_recommendations_ai-0.10.4-py2.py3-none-any.whl (173 kB) Using cached google_cloud_spanner-3.38.0-py2.py3-none-any.whl (333 kB) Using cached google_cloud_videointelligence-2.11.3-py2.py3-none-any.whl (229 kB) Using cached google_cloud_vision-3.4.4-py2.py3-none-any.whl (444 kB) Using cached hypothesis-6.82.0-py3-none-any.whl (414 kB) Using cached joblib-1.3.1-py3-none-any.whl (301 kB) Using cached mock-5.1.0-py3-none-any.whl (30 kB) Using cached orjson-3.9.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (138 kB) Using cached proto_plus-1.22.3-py3-none-any.whl (48 kB) Using cached protobuf-4.23.4-cp37-abi3-manylinux2014_x86_64.whl (304 kB) Using cached pymongo-4.4.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (619 kB) Using cached pytest-7.4.0-py3-none-any.whl (323 kB) Using cached pytest_xdist-3.3.1-py3-none-any.whl (41 kB) Using cached PyYAML-6.0.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (736 kB) Using cached regex-2023.6.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (772 kB) Using cached requests-2.31.0-py3-none-any.whl (62 kB) Using cached requests_mock-1.11.0-py2.py3-none-any.whl (28 kB) Using cached scikit_learn-1.3.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (11.1 MB) Using cached SQLAlchemy-1.4.49-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB) Using cached typing_extensions-4.7.1-py3-none-any.whl (33 kB) Using cached botocore-1.31.16-py3-none-any.whl (11.1 MB) Using cached certifi-2023.7.22-py3-none-any.whl (158 kB) Using cached charset_normalizer-3.2.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (199 kB) Using cached dnspython-2.4.1-py3-none-any.whl (300 kB) Using cached docker-6.1.3-py3-none-any.whl (148 kB) Using cached exceptiongroup-1.1.2-py3-none-any.whl (14 kB) Using cached execnet-2.0.2-py3-none-any.whl (37 kB) Using cached google_cloud_resource_manager-1.10.2-py2.py3-none-any.whl (321 kB) Using cached google_cloud_storage-2.10.0-py2.py3-none-any.whl (114 kB) Using cached googleapis_common_protos-1.60.0-py2.py3-none-any.whl (227 kB) Using cached greenlet-3.0.0a1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (613 kB) Using cached grpcio_status-1.57.0rc1-py3-none-any.whl (5.1 kB) Using cached msal-1.24.0b1-py2.py3-none-any.whl (90 kB) Using cached pyparsing-3.1.1-py3-none-any.whl (103 kB) Using cached threadpoolctl-3.2.0-py3-none-any.whl (15 kB) Using cached urllib3-1.26.16-py2.py3-none-any.whl (143 kB) Using cached PyMySQL-1.1.0-py3-none-any.whl (44 kB) Using cached websocket_client-1.6.1-py3-none-any.whl (56 kB) Using cached PyJWT-2.8.0-py3-none-any.whl (22 kB) Building wheels for collected packages: apache-beam Building wheel for apache-beam (setup.py): started Building wheel for apache-beam (setup.py): finished with status 'done' Created wheel for apache-beam: filename=apache_beam-2.50.0.dev0-py3-none-any.whl size=3253091 sha256=1517600ba70a31d8dac94178553348932ad119781fa7b5e01bb3393cd960748d Stored in directory: /home/jenkins/.cache/pip/wheels/67/34/b8/5adce605a0a3f10491be234729fa4854c6a127bc01194f13fc Successfully built apache-beam Installing collected packages: sortedcontainers, pytz, docopt, crcmod, zstandard, wrapt, websocket-client, urllib3, typing-extensions, threadpoolctl, tenacity, sqlparse, six, shapely, scipy, regex, pyyaml, pyparsing, pymysql, PyJWT, pyhamcrest, pycparser, pyasn1, pyarrow, psycopg2-binary, protobuf, portalocker, parameterized, overrides, orjson, objsize, mock, joblib, jmespath, iniconfig, idna, greenlet, google-crc32c, fasteners, fastavro, execnet, exceptiongroup, dnspython, dill, deprecation, cloudpickle, charset-normalizer, certifi, attrs, sqlalchemy, scikit-learn, rsa, requests, python-dateutil, pytest, pymongo, pydot, pyasn1-modules, proto-plus, isodate, hypothesis, httplib2, googleapis-common-protos, google-resumable-media, cffi, requests_mock, pytest-xdist, pytest-timeout, pandas, oauth2client, hdfs, grpcio-status, google-auth, freezegun, docker, cryptography, botocore, azure-core, testcontainers, s3transfer, grpc-google-iam-v1, google-auth-httplib2, google-apitools, google-api-core, azure-storage-blob, apache-beam, msal, google-cloud-core, boto3, msal-extensions, google-cloud-vision, google-cloud-videointelligence, google-cloud-storage, google-cloud-spanner, google-cloud-resource-manager, google-cloud-recommendations-ai, google-cloud-pubsub, google-cloud-language, google-cloud-dlp, google-cloud-datastore, google-cloud-bigtable, google-cloud-bigquery-storage, google-cloud-bigquery, google-cloud-pubsublite, google-cloud-aiplatform, azure-identity Attempting uninstall: protobuf Found existing installation: protobuf 4.24.0rc2 Uninstalling protobuf-4.24.0rc2: Successfully uninstalled protobuf-4.24.0rc2 Successfully installed PyJWT-2.8.0 apache-beam-2.50.0.dev0 attrs-23.1.0 azure-core-1.28.0 azure-identity-1.14.0b2 azure-storage-blob-12.17.0 boto3-1.28.16 botocore-1.31.16 certifi-2023.7.22 cffi-1.15.1 charset-normalizer-3.2.0 cloudpickle-2.2.1 crcmod-1.7 cryptography-41.0.2 deprecation-2.1.0 dill-0.3.1.1 dnspython-2.4.1 docker-6.1.3 docopt-0.6.2 exceptiongroup-1.1.2 execnet-2.0.2 fastavro-1.8.2 fasteners-0.18 freezegun-1.2.2 google-api-core-2.12.0.dev0 google-apitools-0.5.31 google-auth-2.22.0 google-auth-httplib2-0.1.0 google-cloud-aiplatform-1.28.1 google-cloud-bigquery-3.11.4 google-cloud-bigquery-storage-2.22.0 google-cloud-bigtable-2.20.0 google-cloud-core-2.3.3 google-cloud-datastore-2.16.1 google-cloud-dlp-3.12.2 google-cloud-language-2.10.1 google-cloud-pubsub-2.18.1 google-cloud-pubsublite-1.8.3 google-cloud-recommendations-ai-0.10.4 google-cloud-resource-manager-1.10.2 google-cloud-spanner-3.38.0 google-cloud-storage-2.10.0 google-cloud-videointelligence-2.11.3 google-cloud-vision-3.4.4 google-crc32c-1.5.0 google-resumable-media-2.5.0 googleapis-common-protos-1.60.0 greenlet-3.0.0a1 grpc-google-iam-v1-0.12.6 grpcio-status-1.57.0rc1 hdfs-2.7.0 httplib2-0.22.0 hypothesis-6.82.0 idna-3.4 iniconfig-2.0.0 isodate-0.6.1 jmespath-1.0.1 joblib-1.3.1 mock-5.1.0 msal-1.24.0b1 msal-extensions-1.0.0 oauth2client-4.1.3 objsize-0.6.1 orjson-3.9.2 overrides-6.5.0 pandas-1.5.3 parameterized-0.9.0 portalocker-2.7.0 proto-plus-1.22.3 protobuf-4.23.4 psycopg2-binary-2.9.6 pyarrow-11.0.0 pyasn1-0.5.0 pyasn1-modules-0.3.0 pycparser-2.21 pydot-1.4.2 pyhamcrest-2.0.4 pymongo-4.4.1 pymysql-1.1.0 pyparsing-3.1.1 pytest-7.4.0 pytest-timeout-2.1.0 pytest-xdist-3.3.1 python-dateutil-2.8.2 pytz-2023.3 pyyaml-6.0.1 regex-2023.6.3 requests-2.31.0 requests_mock-1.11.0 rsa-4.9 s3transfer-0.6.1 scikit-learn-1.3.0 scipy-1.10.1 shapely-1.8.5.post1 six-1.16.0 sortedcontainers-2.4.0 sqlalchemy-1.4.49 sqlparse-0.4.4 tenacity-8.2.2 testcontainers-3.7.1 threadpoolctl-3.2.0 typing-extensions-4.7.1 urllib3-1.26.16 websocket-client-1.6.1 wrapt-1.15.0 zstandard-0.21.0 > Task :sdks:python:apache_beam:testing:load_tests:run INFO:apache_beam.runners.portability.stager:Copying Beam SDK "<https://ci-beam.apache.org/job/beam_LoadTests_Python_Combine_Dataflow_Streaming/ws/src/sdks/python/build/apache-beam.tar.gz"> to staging location. INFO:apache_beam.runners.dataflow.dataflow_runner:Pipeline has additional dependencies to be installed in SDK **** container, consider using the SDK container image pre-building workflow to avoid repetitive installations. Learn more on https://cloud.google.com/dataflow/docs/guides/using-custom-containers#prebuild INFO:root:Using provided Python SDK container image: gcr.io/cloud-dataflow/v1beta3/beam_python3.8_sdk:beam-master-20230717 INFO:root:Python SDK container image set to "gcr.io/cloud-dataflow/v1beta3/beam_python3.8_sdk:beam-master-20230717" for Docker environment INFO:apache_beam.runners.dataflow.internal.apiclient:Defaulting to the temp_location as staging_location: gs://temp-storage-for-perf-tests/smoketests INFO:apache_beam.internal.gcp.auth:Setting socket default timeout to 60 seconds. INFO:apache_beam.internal.gcp.auth:socket default timeout is 60.0 seconds. INFO:apache_beam.runners.dataflow.internal.apiclient:Starting GCS upload to gs://temp-storage-for-perf-tests/smoketests/load-tests-python-dataflow-streaming-combine-1-0801125406.1690902689.107230/dataflow_python_sdk.tar... INFO:apache_beam.runners.dataflow.internal.apiclient:Completed GCS upload to gs://temp-storage-for-perf-tests/smoketests/load-tests-python-dataflow-streaming-combine-1-0801125406.1690902689.107230/dataflow_python_sdk.tar in 0 seconds. INFO:apache_beam.runners.dataflow.internal.apiclient:Starting GCS upload to gs://temp-storage-for-perf-tests/smoketests/load-tests-python-dataflow-streaming-combine-1-0801125406.1690902689.107230/pipeline.pb... INFO:apache_beam.runners.dataflow.internal.apiclient:Completed GCS upload to gs://temp-storage-for-perf-tests/smoketests/load-tests-python-dataflow-streaming-combine-1-0801125406.1690902689.107230/pipeline.pb in 0 seconds. INFO:apache_beam.runners.dataflow.internal.apiclient:Create job: <Job clientRequestId: '20230801151129108209-2289' createTime: '2023-08-01T15:11:30.145212Z' currentStateTime: '1970-01-01T00:00:00Z' id: '2023-08-01_08_11_29-12703873027658243698' location: 'us-central1' name: 'load-tests-python-dataflow-streaming-combine-1-0801125406' projectId: 'apache-beam-testing' stageStates: [] startTime: '2023-08-01T15:11:30.145212Z' steps: [] tempFiles: [] type: TypeValueValuesEnum(JOB_TYPE_STREAMING, 2)> INFO:apache_beam.runners.dataflow.internal.apiclient:Created job with id: [2023-08-01_08_11_29-12703873027658243698] INFO:apache_beam.runners.dataflow.internal.apiclient:Submitted job: 2023-08-01_08_11_29-12703873027658243698 INFO:apache_beam.runners.dataflow.internal.apiclient:To access the Dataflow monitoring console, please navigate to https://console.cloud.google.com/dataflow/jobs/us-central1/2023-08-01_08_11_29-12703873027658243698?project=apache-beam-testing INFO:apache_beam.runners.dataflow.dataflow_runner:Job 2023-08-01_08_11_29-12703873027658243698 is in state JOB_STATE_PENDING INFO:apache_beam.runners.dataflow.dataflow_runner:2023-08-01T15:11:34.426Z: JOB_MESSAGE_BASIC: Worker configuration: e2-standard-2 in us-central1-a. INFO:apache_beam.runners.dataflow.dataflow_runner:2023-08-01T15:11:39.001Z: JOB_MESSAGE_DETAILED: Expanding SplittableParDo operations into optimizable parts. INFO:apache_beam.runners.dataflow.dataflow_runner:2023-08-01T15:11:39.027Z: JOB_MESSAGE_DETAILED: Expanding CollectionToSingleton operations into optimizable parts. INFO:apache_beam.runners.dataflow.dataflow_runner:2023-08-01T15:11:39.075Z: JOB_MESSAGE_DETAILED: Expanding CoGroupByKey operations into optimizable parts. INFO:apache_beam.runners.dataflow.dataflow_runner:2023-08-01T15:11:39.124Z: JOB_MESSAGE_DETAILED: Expanding SplittableProcessKeyed operations into optimizable parts. INFO:apache_beam.runners.dataflow.dataflow_runner:2023-08-01T15:11:39.151Z: JOB_MESSAGE_DETAILED: Expanding GroupByKey operations into streaming Read/Write steps INFO:apache_beam.runners.dataflow.dataflow_runner:2023-08-01T15:11:39.198Z: JOB_MESSAGE_DETAILED: Lifting ValueCombiningMappingFns into MergeBucketsMappingFns INFO:apache_beam.runners.dataflow.dataflow_runner:2023-08-01T15:11:39.250Z: JOB_MESSAGE_DEBUG: Annotating graph with Autotuner information. INFO:apache_beam.runners.dataflow.dataflow_runner:2023-08-01T15:11:39.284Z: JOB_MESSAGE_DETAILED: Fusing adjacent ParDo, Read, Write, and Flatten operations INFO:apache_beam.runners.dataflow.dataflow_runner:2023-08-01T15:11:39.305Z: JOB_MESSAGE_DETAILED: Fusing consumer Read synthetic/Map(<lambda at iobase.py:911>) into Read synthetic/Impulse INFO:apache_beam.runners.dataflow.dataflow_runner:2023-08-01T15:11:39.328Z: JOB_MESSAGE_DETAILED: Fusing consumer ref_AppliedPTransform_Read-synthetic-SDFBoundedSourceReader-ParDo-SDFBoundedSourceDoFn-_6/PairWithRestriction into Read synthetic/Map(<lambda at iobase.py:911>) INFO:apache_beam.runners.dataflow.dataflow_runner:2023-08-01T15:11:39.352Z: JOB_MESSAGE_DETAILED: Fusing consumer ref_AppliedPTransform_Read-synthetic-SDFBoundedSourceReader-ParDo-SDFBoundedSourceDoFn-_6/SplitWithSizing into ref_AppliedPTransform_Read-synthetic-SDFBoundedSourceReader-ParDo-SDFBoundedSourceDoFn-_6/PairWithRestriction INFO:apache_beam.runners.dataflow.dataflow_runner:2023-08-01T15:11:39.376Z: JOB_MESSAGE_DETAILED: Fusing consumer Measure time: Start into ref_AppliedPTransform_Read-synthetic-SDFBoundedSourceReader-ParDo-SDFBoundedSourceDoFn-_6/ProcessElementAndRestrictionWithSizing INFO:apache_beam.runners.dataflow.dataflow_runner:2023-08-01T15:11:39.400Z: JOB_MESSAGE_DETAILED: Fusing consumer Combine with Top 0/KeyWithVoid into Measure time: Start INFO:apache_beam.runners.dataflow.dataflow_runner:2023-08-01T15:11:39.422Z: JOB_MESSAGE_DETAILED: Fusing consumer Combine with Top 0/CombinePerKey/Combine/ConvertToAccumulators into Combine with Top 0/KeyWithVoid INFO:apache_beam.runners.dataflow.dataflow_runner:2023-08-01T15:11:39.449Z: JOB_MESSAGE_DETAILED: Fusing consumer Combine with Top 0/CombinePerKey/GroupByKey/WriteStream into Combine with Top 0/CombinePerKey/Combine/ConvertToAccumulators INFO:apache_beam.runners.dataflow.dataflow_runner:2023-08-01T15:11:39.475Z: JOB_MESSAGE_DETAILED: Fusing consumer Combine with Top 0/CombinePerKey/Combine into Combine with Top 0/CombinePerKey/GroupByKey/ReadStream INFO:apache_beam.runners.dataflow.dataflow_runner:2023-08-01T15:11:39.502Z: JOB_MESSAGE_DETAILED: Fusing consumer Combine with Top 0/CombinePerKey/Combine/Extract into Combine with Top 0/CombinePerKey/Combine INFO:apache_beam.runners.dataflow.dataflow_runner:2023-08-01T15:11:39.526Z: JOB_MESSAGE_DETAILED: Fusing consumer Combine with Top 0/UnKey into Combine with Top 0/CombinePerKey/Combine/Extract INFO:apache_beam.runners.dataflow.dataflow_runner:2023-08-01T15:11:39.554Z: JOB_MESSAGE_DETAILED: Fusing consumer Consume 0 into Combine with Top 0/UnKey INFO:apache_beam.runners.dataflow.dataflow_runner:2023-08-01T15:11:39.578Z: JOB_MESSAGE_DETAILED: Fusing consumer Measure time: End 0 into Consume 0 INFO:apache_beam.runners.dataflow.dataflow_runner:2023-08-01T15:11:39.656Z: JOB_MESSAGE_DEBUG: Workflow config is missing a default resource spec. INFO:apache_beam.runners.dataflow.dataflow_runner:2023-08-01T15:11:39.681Z: JOB_MESSAGE_DEBUG: Adding StepResource setup and teardown to workflow graph. INFO:apache_beam.runners.dataflow.dataflow_runner:2023-08-01T15:11:39.714Z: JOB_MESSAGE_BASIC: Running job using Streaming Engine INFO:apache_beam.runners.dataflow.dataflow_runner:2023-08-01T15:11:39.745Z: JOB_MESSAGE_DEBUG: Adding workflow start and stop steps. INFO:apache_beam.runners.dataflow.dataflow_runner:2023-08-01T15:11:39.767Z: JOB_MESSAGE_DEBUG: Assigning stage ids. INFO:apache_beam.runners.dataflow.dataflow_runner:2023-08-01T15:11:39.943Z: JOB_MESSAGE_DEBUG: Starting **** pool setup. INFO:apache_beam.runners.dataflow.dataflow_runner:2023-08-01T15:11:39.969Z: JOB_MESSAGE_BASIC: Starting 5 ****s in us-central1-a... INFO:apache_beam.runners.dataflow.dataflow_runner:2023-08-01T15:11:39.997Z: JOB_MESSAGE_DEBUG: Starting **** pool setup. INFO:apache_beam.runners.dataflow.dataflow_runner:Job 2023-08-01_08_11_29-12703873027658243698 is in state JOB_STATE_RUNNING INFO:apache_beam.runners.dataflow.dataflow_runner:2023-08-01T15:12:09.991Z: JOB_MESSAGE_BASIC: Your project already contains 100 Dataflow-created metric descriptors, so new user metrics of the form custom.googleapis.com/* will not be created. However, all user metrics are also available in the metric dataflow.googleapis.com/job/user_counter. If you rely on the custom metrics, you can delete old / unused metric descriptors. See https://developers.google.com/apis-explorer/#p/monitoring/v3/monitoring.projects.metricDescriptors.list and https://developers.google.com/apis-explorer/#p/monitoring/v3/monitoring.projects.metricDescriptors.delete INFO:apache_beam.runners.dataflow.dataflow_runner:2023-08-01T15:12:28.036Z: JOB_MESSAGE_DETAILED: Autoscaling: Raised the number of ****s to 4 so that the pipeline can catch up with its backlog and keep up with its input rate. INFO:apache_beam.runners.dataflow.dataflow_runner:2023-08-01T15:12:28.058Z: JOB_MESSAGE_DETAILED: Autoscaling: Resized **** pool to 4, though goal was 5. This could be a quota issue. INFO:apache_beam.runners.dataflow.dataflow_runner:2023-08-01T15:12:47.810Z: JOB_MESSAGE_DETAILED: Autoscaling: Raised the number of ****s to 5 so that the pipeline can catch up with its backlog and keep up with its input rate. INFO:apache_beam.runners.dataflow.dataflow_runner:2023-08-01T15:13:01.923Z: JOB_MESSAGE_DETAILED: Workers have started successfully. INFO:apache_beam.runners.dataflow.dataflow_runner:2023-08-01T15:13:11.202Z: JOB_MESSAGE_DETAILED: All ****s have finished the startup processes and began to receive work requests. INFO:apache_beam.runners.dataflow.dataflow_runner:2023-08-01T15:38:04.276Z: JOB_MESSAGE_DETAILED: Autoscaling: Raised the number of ****s to 5 so that the pipeline can catch up with its backlog and keep up with its input rate. INFO:apache_beam.runners.dataflow.dataflow_runner:2023-08-01T15:54:02.956Z: JOB_MESSAGE_DETAILED: Autoscaling: Raised the number of ****s to 5 so that the pipeline can catch up with its backlog and keep up with its input rate. INFO:apache_beam.runners.dataflow.dataflow_runner:2023-08-01T16:11:06.061Z: JOB_MESSAGE_DETAILED: Autoscaling: Raised the number of ****s to 5 so that the pipeline can catch up with its backlog and keep up with its input rate. INFO:apache_beam.runners.dataflow.dataflow_runner:2023-08-01T16:17:07.415Z: JOB_MESSAGE_DETAILED: Autoscaling: Raised the number of ****s to 5 so that the pipeline can catch up with its backlog and keep up with its input rate. INFO:apache_beam.runners.dataflow.dataflow_runner:2023-08-01T16:25:57.342Z: JOB_MESSAGE_DETAILED: Autoscaling: Raised the number of ****s to 5 so that the pipeline can catch up with its backlog and keep up with its input rate. INFO:apache_beam.runners.dataflow.dataflow_runner:2023-08-01T16:43:08.533Z: JOB_MESSAGE_DETAILED: Autoscaling: Raised the number of ****s to 5 so that the pipeline can catch up with its backlog and keep up with its input rate. INFO:apache_beam.runners.dataflow.dataflow_runner:2023-08-01T16:50:10.192Z: JOB_MESSAGE_DETAILED: Autoscaling: Raised the number of ****s to 5 so that the pipeline can catch up with its backlog and keep up with its input rate. INFO:apache_beam.runners.dataflow.dataflow_runner:2023-08-01T16:58:11.022Z: JOB_MESSAGE_DETAILED: Autoscaling: Raised the number of ****s to 5 so that the pipeline can catch up with its backlog and keep up with its input rate. INFO:apache_beam.runners.dataflow.dataflow_runner:2023-08-01T17:12:12.670Z: JOB_MESSAGE_DETAILED: Autoscaling: Raised the number of ****s to 5 so that the pipeline can catch up with its backlog and keep up with its input rate. INFO:apache_beam.runners.dataflow.dataflow_runner:2023-08-01T17:18:14.313Z: JOB_MESSAGE_DETAILED: Autoscaling: Raised the number of ****s to 5 so that the pipeline can catch up with its backlog and keep up with its input rate. INFO:apache_beam.runners.dataflow.dataflow_runner:2023-08-01T17:28:17.079Z: JOB_MESSAGE_DETAILED: Autoscaling: Raised the number of ****s to 5 so that the pipeline can catch up with its backlog and keep up with its input rate. INFO:apache_beam.runners.dataflow.dataflow_runner:2023-08-01T17:41:16.149Z: JOB_MESSAGE_DETAILED: Autoscaling: Raised the number of ****s to 5 so that the pipeline can catch up with its backlog and keep up with its input rate. INFO:apache_beam.runners.dataflow.dataflow_runner:2023-08-01T17:48:17.798Z: JOB_MESSAGE_DETAILED: Autoscaling: Raised the number of ****s to 5 so that the pipeline can catch up with its backlog and keep up with its input rate. INFO:apache_beam.runners.dataflow.dataflow_runner:2023-08-01T17:57:20.011Z: JOB_MESSAGE_DETAILED: Autoscaling: Raised the number of ****s to 5 so that the pipeline can catch up with its backlog and keep up with its input rate. INFO:apache_beam.runners.dataflow.dataflow_runner:2023-08-01T18:10:21.731Z: JOB_MESSAGE_DETAILED: Autoscaling: Raised the number of ****s to 5 so that the pipeline can catch up with its backlog and keep up with its input rate. INFO:apache_beam.runners.dataflow.dataflow_runner:2023-08-01T18:17:22.068Z: JOB_MESSAGE_DETAILED: Autoscaling: Raised the number of ****s to 5 so that the pipeline can catch up with its backlog and keep up with its input rate. INFO:apache_beam.runners.dataflow.dataflow_runner:2023-08-01T18:26:23.759Z: JOB_MESSAGE_DETAILED: Autoscaling: Raised the number of ****s to 5 so that the pipeline can catch up with its backlog and keep up with its input rate. INFO:apache_beam.runners.dataflow.dataflow_runner:2023-08-01T18:46:25.820Z: JOB_MESSAGE_DETAILED: Autoscaling: Raised the number of ****s to 5 so that the pipeline can catch up with its backlog and keep up with its input rate. INFO:apache_beam.runners.dataflow.dataflow_runner:2023-08-01T18:55:28.211Z: JOB_MESSAGE_DETAILED: Autoscaling: Raised the number of ****s to 5 so that the pipeline can catch up with its backlog and keep up with its input rate. INFO:apache_beam.runners.dataflow.dataflow_runner:2023-08-01T19:09:30.048Z: JOB_MESSAGE_DETAILED: Autoscaling: Raised the number of ****s to 5 so that the pipeline can catch up with its backlog and keep up with its input rate. INFO:apache_beam.runners.dataflow.dataflow_runner:2023-08-01T19:18:28.832Z: JOB_MESSAGE_DETAILED: Autoscaling: Raised the number of ****s to 5 so that the pipeline can catch up with its backlog and keep up with its input rate. INFO:apache_beam.runners.dataflow.dataflow_runner:2023-08-01T19:31:31.469Z: JOB_MESSAGE_DETAILED: Autoscaling: Raised the number of ****s to 5 so that the pipeline can catch up with its backlog and keep up with its input rate. INFO:apache_beam.runners.dataflow.dataflow_runner:2023-08-01T19:41:34.221Z: JOB_MESSAGE_DETAILED: Autoscaling: Raised the number of ****s to 5 so that the pipeline can catch up with its backlog and keep up with its input rate. INFO:apache_beam.runners.dataflow.dataflow_runner:2023-08-01T19:54:32.481Z: JOB_MESSAGE_DETAILED: Autoscaling: Raised the number of ****s to 5 so that the pipeline can catch up with its backlog and keep up with its input rate. INFO:apache_beam.runners.dataflow.dataflow_runner:Job 2023-08-01_08_11_29-12703873027658243698 is in state JOB_STATE_CANCELLING INFO:apache_beam.runners.dataflow.dataflow_runner:2023-08-01T20:01:09.281Z: JOB_MESSAGE_BASIC: Cancel request is committed for workflow job: 2023-08-01_08_11_29-12703873027658243698. INFO:apache_beam.runners.dataflow.dataflow_runner:2023-08-01T20:01:09.310Z: JOB_MESSAGE_DETAILED: Cleaning up. INFO:apache_beam.runners.dataflow.dataflow_runner:2023-08-01T20:01:09.353Z: JOB_MESSAGE_DEBUG: Starting **** pool teardown. INFO:apache_beam.runners.dataflow.dataflow_runner:2023-08-01T20:01:09.370Z: JOB_MESSAGE_BASIC: Stopping **** pool... INFO:apache_beam.runners.dataflow.dataflow_runner:2023-08-01T20:01:09.397Z: JOB_MESSAGE_DEBUG: Starting **** pool teardown. INFO:apache_beam.runners.dataflow.dataflow_runner:2023-08-01T20:01:09.417Z: JOB_MESSAGE_BASIC: Stopping **** pool... Traceback (most recent call last): File "/usr/lib/python3.8/runpy.py", line 194, in _run_module_as_main return _run_code(code, main_globals, None, File "/usr/lib/python3.8/runpy.py", line 87, in _run_code exec(code, run_globals) File "<https://ci-beam.apache.org/job/beam_LoadTests_Python_Combine_Dataflow_Streaming/ws/src/sdks/python/apache_beam/testing/load_tests/combine_test.py",> line 129, in <module> CombineTest().run() File "<https://ci-beam.apache.org/job/beam_LoadTests_Python_Combine_Dataflow_Streaming/ws/src/sdks/python/apache_beam/testing/load_tests/load_test.py",> line 152, in run state = self.result.wait_until_finish(duration=self.timeout_ms) File "<https://ci-beam.apache.org/job/beam_LoadTests_Python_Combine_Dataflow_Streaming/ws/src/sdks/python/apache_beam/runners/dataflow/dataflow_runner.py",> line 748, in wait_until_finish assert duration or terminated, ( AssertionError: Job did not reach to a terminal state after waiting indefinitely. Console URL: https://console.cloud.google.com/dataflow/jobs/<RegionId>/2023-08-01_08_11_29-12703873027658243698?project=<ProjectId> > Task :sdks:python:apache_beam:testing:load_tests:run FAILED FAILURE: Build failed with an exception. * Where: Build file '<https://ci-beam.apache.org/job/beam_LoadTests_Python_Combine_Dataflow_Streaming/ws/src/sdks/python/apache_beam/testing/load_tests/build.gradle'> line: 63 * What went wrong: Execution failed for task ':sdks:python:apache_beam:testing:load_tests:run'. > error occurred * Try: > Run with --stacktrace option to get the stack trace. > Run with --info or --debug option to get more log output. * Get more help at https://help.gradle.org Deprecated Gradle features were used in this build, making it incompatible with Gradle 8.0. You can use '--warning-mode all' to show the individual deprecation warnings and determine if they come from your own scripts or plugins. See https://docs.gradle.org/7.6.2/userguide/command_line_interface.html#sec:command_line_warnings BUILD FAILED in 4h 51m 47s 15 actionable tasks: 9 executed, 4 from cache, 2 up-to-date Publishing build scan... https://ge.apache.org/s/sdocuylhds3dw Build step 'Invoke Gradle script' changed build result to FAILURE Build step 'Invoke Gradle script' marked build as failure --------------------------------------------------------------------- To unsubscribe, e-mail: [email protected] For additional commands, e-mail: [email protected]
