Certainly there are lots of questions surrounding just what squeezed radiation (existence only proven in 1985) can do, so a good approach is to build kit to generate and detect it and then use it in experiments. Almost all work has been in the optical, so trying this at micro/mm-wave is challenging, but while there’s good potential, it’s worth having a go.
Would you have any details of the circuit and what might it cost to buy? Many thanks, Neil From: mtchen <[email protected]> Sent: 24 February 2022 20:57 To: [email protected] Cc: [email protected] <[email protected]> Subject: Re: quantum radar in astronomy Dear Neil, We have developed a 16 Gsps 4-bit digitizer and a strong interest in such an experiment...... On Wednesday, February 23, 2022 at 11:08:02 PM UTC-10 [email protected] <mailto:[email protected]> wrote: Dear All, Applications where background thermal radiation is low and object return reflections are weak may benefit from quantum radar. So I was curious, who if any, might be exploiting this for radioastronomy? Using a beam of entangled photons (squeezed light) to illuminate has advantage that phase error (from shot noise) is lower than that in classical coherent radar beams. This would offer greater sensitivity for detecting smaller objects and estimating their distances. I’m looking at materials and circuits to generate and detect entangled photons – eg a 20 Gsps 4-bit digitiser as part of the receiver. One potential application might be to track asteroids in the solar system, or even detect objects before they enter the solar system – a key question being achievable performance. Anyone aware of interest in this for astronomy? Many thanks, Neil -- You received this message because you are subscribed to the Google Groups "[email protected]" group. To unsubscribe from this group and stop receiving emails from it, send an email to [email protected]. To view this discussion on the web visit https://groups.google.com/a/lists.berkeley.edu/d/msgid/casper/001a01d82a29%24e0c37040%24a24a50c0%24%40tiscali.co.uk.

