***  For details on how to be removed from this list visit the  ***
***          CCP4 home page http://www.ccp4.ac.uk         ***


Kay Diederichs wrote:
<snipped>
The sigmas of the datasets are not independant, rather they should be similar (because the intensities should be the same, and strong reflections have numerically high sigmaF's, so the sigma of a reflection is correlated with its intensity).

Here is an example of the correlation between I and SigI for one of my old data sets. As expected based on counting statistics, SigI is indeed correlated with I.

>> give your option (or hit <return> to list options)
correl col 9 10

selected: CORREL



  Resolution limits will be set to the limits
  observed in the database

  resolution limits used :   37.443676  -  1.63345063

  Comparing columns :
 IMEAN

 SIGIMEAN


  Grabbing statistics ...

 $TABLE: Correlation vs. resolution:
$GRAPHS: Correlation vs. resolution:A:3,5:: R-factor vs. resolution:N:3,4:
$$
NSHELL  DMIN    DMAX    RFACT   CORREL    <F1>    <F2>    NREF $$
$$
   1   37.44    4.43   191.90   0.9297  1424.4    29.4     848
   2    4.43    3.52   192.40   0.9521  1365.0    26.4     775
   3    3.52    3.07   189.96   0.9292   929.3    23.9     763
   4    3.07    2.79   189.38   0.9162   525.7    14.4     738
   5    2.79    2.59   188.89   0.9289   386.2    11.1     735
   6    2.59    2.44   188.82   0.9330   318.8     9.2     731
   7    2.44    2.32   188.53   0.9261   280.1     8.3     733
   8    2.32    2.22   188.38   0.9307   241.5     7.3     723
   9    2.22    2.13   187.90   0.9126   209.7     6.6     714
  10    2.13    2.06   187.40   0.8805   192.1     6.3     724
  11    2.06    1.99   186.99   0.9074   158.0     5.3     709
  12    1.99    1.94   185.80   0.8693   129.0     4.8     710
  13    1.94    1.89   184.17   0.7946   101.4     4.3     715
  14    1.89    1.84   182.05   0.7901    81.2     3.9     725
  15    1.84    1.80   180.24   0.7362    65.4     3.5     689
  16    1.80    1.76   176.87   0.6420    55.6     3.5     733
  17    1.76    1.72   173.00   0.5187    41.0     3.2     688
  18    1.72    1.69   171.37   0.5649    37.4     3.2     712
  19    1.69    1.66   165.57   0.2884    29.9     3.1     705
  20    1.66    1.63   157.98   0.2313    26.4     3.6     630


Based on counting statistics I would expect that the correlation would be better between I and the variance of I (e.g. SigI**2). However, it doesn't work out that way, which means I'm either missing something our our sigma values contain considerable contributions beyond the counting statitics contribution, and this additional contribution is more or less proportional to I.

Here are the stats for I versus SigI**2

>> give your option (or hit <return> to list options)
correl col 9 16

selected: CORREL



  Resolution limits will be set to the limits
  observed in the database

  resolution limits used :   37.443676  -  1.63345063

  Comparing columns :
 IMEAN

 SigI2


  Grabbing statistics ...

 $TABLE: Correlation vs. resolution:
$GRAPHS: Correlation vs. resolution:A:3,5:: R-factor vs. resolution:N:3,4:
$$
NSHELL  DMIN    DMAX    RFACT   CORREL    <F1>    <F2>    NREF $$
$$
   1   37.44    4.43   116.38   0.5945  1424.4  3561.3     848
   2    4.43    3.52    88.66   0.7352  1365.0  2018.8     775
   3    3.52    3.07   103.94   0.6108   929.3  1921.0     763
   4    3.07    2.79    79.20   0.5270   525.7   531.0     738
   5    2.79    2.59    80.23   0.6956   386.2   302.4     735
   6    2.59    2.44    82.18   0.7444   318.8   191.3     731
   7    2.44    2.32    87.78   0.7102   280.1   147.5     733
   8    2.32    2.22    92.07   0.7871   241.5   100.7     723
   9    2.22    2.13    99.20   0.6261   209.7    93.5     714
  10    2.13    2.06   102.97   0.5121   192.1    97.1     724
  11    2.06    1.99   108.06   0.7500   158.0    50.5     709
  12    1.99    1.94   123.41   0.5821   129.0    70.7     710
  13    1.94    1.89   117.93   0.7167   101.4    28.4     715
  14    1.89    1.84   116.50   0.7026    81.2    23.2     725
  15    1.84    1.80   120.65   0.6890    65.4    18.2     689
  16    1.80    1.76   114.66   0.6008    55.6    17.9     733
  17    1.76    1.72   118.50   0.4996    41.0    13.6     688
  18    1.72    1.69   114.22   0.4680    37.4    14.8     712
  19    1.69    1.66   117.33   0.2521    29.9    12.9     705
  20    1.66    1.63   118.10   0.1372    26.4    23.0     630

This should be done for a bunch of datasets but I wonder if someone else has looked at this. Any ideas???

Bart

==============================================================================

Bart Hazes (Assistant Professor)
Dept. of Medical Microbiology & Immunology
University of Alberta
1-15 Medical Sciences Building
Edmonton, Alberta
Canada, T6G 2H7
phone:  1-780-492-0042
fax:    1-780-492-7521

==============================================================================

Reply via email to