q2 and q3 can be made into "clean" answers by
having special code for _12&o...@o. and r...@o. ;
q4 would be much more problematic.



----- Original Message -----
From: Oleg Kobchenko <[email protected]>
Date: Tuesday, January 19, 2010 21:14
Subject: Re: [Jchat] J and CAS, and problems in CAS
To: Chat forum <[email protected]>

> There are many ways to express the exponent form
> of complex quantities in J
> 
>    
> http://www.jsoftware.com/jwiki/Essays/Complex%20Operations
>    x:r.1p1
> _1
> 
>    q1=.   ^...@o. j. 0.5 * i.3 4
>    q2=. _12 o. o. 0.5 * i.3 4
>    q3=.     r. o. 0.5 * i.3 4
>    q4=.     r.  1r2p1 * i.3 4
>    
>    q1-:"2/q2,q3,:q4
> 1 1 1
> 
> 
> 
> 
> 
> > From: Roger Hui <[email protected]>
> > 
> > The most beautiful identity in all of mathematics is:
> > 
> >    _1 = e^0j1*pi  
> > 
> > ( http://en.wikipedia.org/wiki/Euler%27s_identity )
> > which in one short equation relates the fundamental
> > quantities _1, e, 0j1, and pi.  It has always bothered
> > me that in J the answer is unavoidably:
> > 
> >    ^ 0j1 * 1p1
> > _1j1.22461e_16
> > 
> > Unavoidable if the computations are done using
> > finite precision floating point numbers, which
> > IEEE 64-bit floats are.  (pi can not be represented
> > exactly as a finite precision floating point number.)
> > 
> > However, in J there is the possibility of doing something
> > special for ^...@o., the exponential function (o.) composed
> > with pi times (o.), and in J7.01 that possibility has been
> > realized.  With special code, ^...@o. "knows" when the
> > argument of ^ falls exactly on the real or imaginary
> > axis and has magnitude the requisite fraction/multiple
> > of pi, and accordingly provide the exact answer.  Thus:
> > 
> >    0 j. 0.5 * i.3 4
> >   0 0j0.5 0j1 0j1.5
> > 0j2 0j2.5 0j3 0j3.5
> > 0j4 0j4.5 0j5 0j5.5
> >    ^...@o. 0 j. 0.5 * i.3 4
> > 1 0j1 _1 0j_1
> > 1 0j1 _1 0j_1
> > 1 0j1 _1 0j_1
> > 
> >    ^...@o. 0 j. 2e9 + 0.5 * i.3 4
> > 1 0j1 _1 0j_1
> > 1 0j1 _1 0j_1
> > 1 0j1 _1 0j_1
> > 
> > In contrast:
> > 
> >    ] t=: o. 0 j. 0.5 * i.3 4
> >         0  
> 0j1.5708 0j3.14159 0j4.71239
> > 0j6.28319 0j7.85398 0j9.42478 0j10.9956
> > 0j12.5664 0j14.1372  0j15.708 0j17.2788
> >    ^ t
> >              1 6.12303e_17j1 _1j1.22461e_16 _1.83691e_16j_1
> > 1j_2.44921e_16 3.06152e_16j1 _1j3.67382e_16 _4.28612e_16j_1
> > 1j_4.89843e_16 5.51073e_16j1 _1j6.12303e_16 _2.44989e_15j_1
> > 
> > The difference here is that t is represented by
> > IEEE 64-bit floats, and the quantities are 
> > necessarily inexact.
> > 
> > 
> > 
> > ----- Original Message -----
> > From: DIETER ENSSLEN 
> > Date: Tuesday, January 19, 2010 15:40
> > Subject: Re: [Jchat] J and CAS, and problems in CAS
> > To: Chat forum 
> > 
> > > Dear Roger
> > > 
> > > if this relates to J and CAS topic, could you please add an 
> > > enlightening word in English or mathematics to it
> > > 
> > > thanks
> > ---------------------------------------------------------------
> -------
> > For information about J forums see 
> http://www.jsoftware.com/forums.htm
> 
> 
>       
> -----------------------------------------------------------------
> -----
> For information about J forums see http://www.jsoftware.com/forums.htm
> 
----------------------------------------------------------------------
For information about J forums see http://www.jsoftware.com/forums.htm

Reply via email to