coffezhou opened a new issue, #18004:
URL: https://github.com/apache/tvm/issues/18004

   ### Expected behavior
   
   TVM should run the model correctly.
   
   ### Actual behavior
   
   When compiling and running the model, TVM crashes:
   ```c
   !!!!!!! TVM FFI encountered a Segfault !!!!!!!
     File "<unknown>", in 
__pyx_pw_3tvm_3ffi_4core_8Function_1__call__(_object*, _object* const*, long, 
_object*)
     File "<unknown>", in tvm::ffi::FunctionObj::SafeCall(void*, TVMFFIAny 
const*, int, TVMFFIAny*)
     File "<unknown>", in 
tvm::runtime::relax_vm::VirtualMachineImpl::GetFunction(tvm::ffi::String 
const&, tvm::ffi::ObjectPtr<tvm::ffi::Object> 
const&)::{lambda(tvm::ffi::PackedArgs, 
tvm::ffi::Any*)#4}::operator()(tvm::ffi::PackedArgs, tvm::ffi::Any*) const
     File "<unknown>", in 
tvm::runtime::relax_vm::VirtualMachineImpl::_InvokeClosureStateful(std::__cxx11::basic_string<char,
 std::char_traits<char>, std::allocator<char> >)
     File "<unknown>", in 
tvm::runtime::relax_vm::VirtualMachineImpl::InvokeClosureInternal(tvm::ffi::ObjectRef
 const&, std::vector<tvm::ffi::Any, std::allocator<tvm::ffi::Any> > const&)
     File "<unknown>", in 
tvm::runtime::relax_vm::VirtualMachineImpl::GetClosureInternal(tvm::ffi::String 
const&, bool)::{lambda(tvm::ffi::PackedArgs, 
tvm::ffi::Any*)#1}::operator()(tvm::ffi::PackedArgs, tvm::ffi::Any*) const 
[clone .isra.0]
     File "<unknown>", in 
tvm::runtime::relax_vm::VirtualMachineImpl::InvokeBytecode(long, 
std::vector<tvm::ffi::Any, std::allocator<tvm::ffi::Any> > const&)
     File "<unknown>", in tvm::runtime::relax_vm::VirtualMachineImpl::RunLoop()
     File "<unknown>", in 
tvm::runtime::relax_vm::VirtualMachineImpl::RunInstrCall(tvm::runtime::relax_vm::VMFrame*,
 tvm::runtime::relax_vm::Instruction)
     File "<unknown>", in 
tvm::runtime::relax_vm::VirtualMachineImpl::InvokeClosurePacked(tvm::ffi::ObjectRef
 const&, tvm::ffi::PackedArgs, tvm::ffi::Any*)
     File "<unknown>", in 
tvm::ffi::details::FunctionObjImpl<tvm::ffi::Function::FromPacked<tvm::runtime::WrapFFIFunction(int
 (*)(void*, TVMFFIAny const*, int, TVMFFIAny*), 
tvm::ffi::ObjectPtr<tvm::ffi::Object> const&)::{lambda(tvm::ffi::PackedArgs, 
tvm::ffi::Any*)#1}>(tvm::runtime::WrapFFIFunction(int (*)(void*, TVMFFIAny 
const*, int, TVMFFIAny*), tvm::ffi::ObjectPtr<tvm::ffi::Object> 
const&)::{lambda(tvm::ffi::PackedArgs, 
tvm::ffi::Any*)#1})::{lambda(tvm::ffi::AnyView const*, int, 
tvm::ffi::Any*)#1}>::Call(tvm::ffi::FunctionObj const*, tvm::ffi::AnyView 
const*, int, tvm::ffi::Any*)
     File "../sysdeps/x86_64/multiarch/memmove-vec-unaligned-erms.S", line 262, 
in 0x00007f887fd46963
     File 
"/build/glibc-FcRMwW/glibc-2.31/signal/../sysdeps/unix/sysv/linux/x86_64/sigaction.c",
 in 0x00007f887fbfe08f
     File "<unknown>", in tvm::ffi::(anonymous 
namespace)::backtrace_handler(int)
     File "<unknown>", in tvm::ffi::(anonymous namespace)::Traceback()
   
   Segmentation fault (core dumped)
   
   ``` 
   
   ### Environment
   
   OS: Ubuntu 20.04
   TVM: 0.21.dev0 (3db71bb3a)
   onnxruntime: 1.21.0
   
   ### Steps to reproduce
   
   This bug can be reproduced by the following code with the model in the 
attachment. As shown in the code, the model can be executed by onnxruntime. 
However, TVM crashes when calling the  invoke_stateful function.
   
   ```python
   import sys
   
   import numpy as np
   import onnx
   import onnxruntime
   
   import tvm
   from tvm import relax
   from tvm.relax.frontend.onnx import from_onnx
   
   import pickle
   
               
   def main():
       onnx_model = onnx.load("a1783.onnx")
       
       shape_onnx_model = onnx.shape_inference.infer_shapes(onnx_model)
       onnx.save(shape_onnx_model, '1111.onnx')
       
       with open("inputs.pkl", "rb") as fp:
           inputs = pickle.load(fp)
       
       try:
           ort_session = onnxruntime.InferenceSession(
               onnx_model.SerializeToString(), 
providers=["CPUExecutionProvider"]
           )
           ort_output = ort_session.run([], inputs)
       except Exception as e:
           print(e)
           sys.exit(1)
       print("ONNXRuntime:\n", ort_output)   
       # Convert the onnx model into relax through the onnx importer.
       tvm_model = from_onnx(onnx_model, keep_params_in_input=True)
       # Convert operators for inference mode.
       tvm_model = relax.transform.DecomposeOpsForInference()(tvm_model)
       # Legalize any relax ops into tensorir.
       tvm_model = relax.transform.LegalizeOps()(tvm_model)
       
       # Separate model from parameters.
       tvm_model, params = relax.frontend.detach_params(tvm_model)
       
       # Prepare inputs.
       input_list = [
           inputs[key.name_hint] for key in tvm_model["main"].params if 
key.name_hint in inputs
       ]
       if params:
           input_list += params["main"]
           
       # Compile the relax graph into a VM then run.
       with tvm.transform.PassContext(opt_level=3):
           ex = relax.build(tvm_model, target="llvm")
           vm = relax.VirtualMachine(ex, tvm.cpu())
       
           # Run model and check outputs.
           vm.set_input("main", *input_list)
           vm.invoke_stateful("main")
   
      
   if __name__ == "__main__":
       
       main()
       
   
   ```
   
   
[testcast.zip](https://github.com/user-attachments/files/20359271/testcast.zip)
   
   ### Triage
   
   * needs-triage
   


-- 
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.

To unsubscribe, e-mail: [email protected]

For queries about this service, please contact Infrastructure at:
[email protected]

Reply via email to