careduz edited a comment on issue #14261:
URL: https://github.com/apache/airflow/issues/14261#issuecomment-784574696


   We are facing the same issue (scheduler liveness probe always failing and 
restarting the scheduler). Details:
   
   **Airflow: Version 1.10.14 & 1.10.13**
   **Kubernetes: Version 1.20.2** (DigitalOcean)
   **Helm airflow-stable/airflow: Version 7.16.0**
   
   ```
   Events:
     Type     Reason     Age                From               Message
     ----     ------     ----               ----               -------
     Normal   Scheduled  27m                default-scheduler  Successfully 
assigned airflow/airflow-scheduler-75c6c96d68-r9j4m to apollo-kaon3thg1-882c2
     Normal   Pulled     27m                kubelet            Container image 
"alpine/git:latest" already present on machine
     Normal   Created    27m                kubelet            Created 
container git-clone
     Normal   Started    27m                kubelet            Started 
container git-clone
     Normal   Pulled     26m                kubelet            Container image 
"alpine/git:latest" already present on machine
     Normal   Created    26m                kubelet            Created 
container git-sync
     Normal   Started    26m                kubelet            Started 
container git-sync
     Normal   Killing    12m (x2 over 19m)  kubelet            Container 
airflow-scheduler failed liveness probe, will be restarted
     Normal   Pulled     11m (x3 over 26m)  kubelet            Container image 
"apache/airflow:1.10.14-python3.7" already present on machine
     Normal   Created    11m (x3 over 26m)  kubelet            Created 
container airflow-scheduler
     Normal   Started    11m (x3 over 26m)  kubelet            Started 
container airflow-scheduler
     Warning  Unhealthy  6m (x12 over 21m)  kubelet            Liveness probe 
failed:
   ```
   
   And the logs are basically on a loop:
   ```
   1] {scheduler_job.py:280} DEBUG - Waiting for 
<ForkProcess(DagFileProcessor409-Process, stopped)>
   [2021-02-23 22:58:35,578] {scheduler_job.py:1435} DEBUG - Starting Loop...
   [2021-02-23 22:58:35,578] {scheduler_job.py:1446} DEBUG - Harvesting DAG 
parsing results
   [2021-02-23 22:58:35,579] {dag_processing.py:658} DEBUG - Received message 
of type DagParsingStat
   [2021-02-23 22:58:35,579] {dag_processing.py:658} DEBUG - Received message 
of type DagParsingStat
   [2021-02-23 22:58:35,580] {dag_processing.py:658} DEBUG - Received message 
of type DagParsingStat
   [2021-02-23 22:58:35,580] {dag_processing.py:658} DEBUG - Received message 
of type DagParsingStat
   [2021-02-23 22:58:35,580] {scheduler_job.py:1448} DEBUG - Harvested 0 
SimpleDAGs
   [2021-02-23 22:58:35,581] {scheduler_job.py:1514} DEBUG - Heartbeating the 
executor
   [2021-02-23 22:58:35,581] {base_executor.py:122} DEBUG - 0 running task 
instances
   [2021-02-23 22:58:35,582] {base_executor.py:123} DEBUG - 0 in queue
   [2021-02-23 22:58:35,582] {base_executor.py:124} DEBUG - 32 open slots
   [2021-02-23 22:58:35,582] {base_executor.py:133} DEBUG - Calling the <class 
'airflow.executors.kubernetes_executor.KubernetesExecutor'> sync method
   [2021-02-23 22:58:35,587] {scheduler_job.py:1469} DEBUG - Ran scheduling 
loop in 0.01 seconds
   [2021-02-23 22:58:35,587] {scheduler_job.py:1472} DEBUG - Sleeping for 1.00 
seconds
   [2021-02-23 22:58:36,589] {scheduler_job.py:1484} DEBUG - Sleeping for 0.99 
seconds to prevent excessive logging
   [2021-02-23 22:58:36,729] {settings.py:310} DEBUG - Disposing DB connection 
pool (PID 6719)
   [2021-02-23 22:58:36,930] {settings.py:310} DEBUG - Disposing DB connection 
pool (PID 6717)
   [2021-02-23 22:58:37,258] {scheduler_job.py:280} DEBUG - Waiting for 
<ForkProcess(DagFileProcessor410-Process, stopped)>
   [2021-02-23 22:58:37,259] {scheduler_job.py:280} DEBUG - Waiting for 
<ForkProcess(DagFileProcessor411-Process, stopped)>
   [2021-02-23 22:58:37,582] {scheduler_job.py:1435} DEBUG - Starting Loop...
   [2021-02-23 22:58:37,583] {scheduler_job.py:1446} DEBUG - Harvesting DAG 
parsing results
   [2021-02-23 22:58:37,584] {dag_processing.py:658} DEBUG - Received message 
of type DagParsingStat
   [2021-02-23 22:58:37,586] {dag_processing.py:658} DEBUG - Received message 
of type DagParsingStat
   [2021-02-23 22:58:37,588] {dag_processing.py:658} DEBUG - Received message 
of type DagParsingStat
   [2021-02-23 22:58:37,589] {dag_processing.py:658} DEBUG - Received message 
of type DagParsingStat
   [2021-02-23 22:58:37,591] {scheduler_job.py:1448} DEBUG - Harvested 0 
SimpleDAGs
   [2021-02-23 22:58:37,592] {scheduler_job.py:1514} DEBUG - Heartbeating the 
executor
   [2021-02-23 22:58:37,593] {base_executor.py:122} DEBUG - 0 running task 
instances
   [2021-02-23 22:58:37,602] {base_executor.py:123} DEBUG - 0 in queue
   [2021-02-23 22:58:37,604] {base_executor.py:124} DEBUG - 32 open slots
   [2021-02-23 22:58:37,605] {base_executor.py:133} DEBUG - Calling the <class 
'airflow.executors.kubernetes_executor.KubernetesExecutor'> sync method
   [2021-02-23 22:58:37,607] {scheduler_job.py:1460} DEBUG - Heartbeating the 
scheduler
   [2021-02-23 22:58:37,620] {base_job.py:197} DEBUG - [heartbeat]
   [2021-02-23 22:58:37,630] {scheduler_job.py:1469} DEBUG - Ran scheduling 
loop in 0.05 seconds
   [2021-02-23 22:58:37,631] {scheduler_job.py:1472} DEBUG - Sleeping for 1.00 
seconds
   [2021-02-23 22:58:38,165] {settings.py:310} DEBUG - Disposing DB connection 
pool (PID 6769)
   [2021-02-23 22:58:38,268] {settings.py:310} DEBUG - Disposing DB connection 
pool (PID 6765)
   [2021-02-23 22:58:38,276] {scheduler_job.py:280} DEBUG - Waiting for 
<ForkProcess(DagFileProcessor412-Process, started)>
   [2021-02-23 22:58:38,284] {scheduler_job.py:280} DEBUG - Waiting for 
<ForkProcess(DagFileProcessor413-Process, stopped)>
   [2021-02-23 22:58:38,633] {scheduler_job.py:1484} DEBUG - Sleeping for 0.95 
seconds to prevent excessive logging
   [2021-02-23 22:58:39,331] {settings.py:310} DEBUG - Disposing DB connection 
pool (PID 6797)
   [2021-02-23 22:58:39,361] {settings.py:310} DEBUG - Disposing DB connection 
pool (PID 6801)
   [2021-02-23 22:58:39,589] {scheduler_job.py:1435} DEBUG - Starting Loop...
   [2021-02-23 22:58:39,589] {scheduler_job.py:1446} DEBUG - Harvesting DAG 
parsing results
   [2021-02-23 22:58:39,590] {dag_processing.py:658} DEBUG - Received message 
of type DagParsingStat
   [2021-02-23 22:58:39,590] {dag_processing.py:658} DEBUG - Received message 
of type DagParsingStat
   [2021-02-23 22:58:39,590] {dag_processing.py:658} DEBUG - Received message 
of type DagParsingStat
   [2021-02-23 22:58:39,590] {dag_processing.py:658} DEBUG - Received message 
of type DagParsingStat
   [2021-02-23 22:58:39,591] {scheduler_job.py:1448} DEBUG - Harvested 0 
SimpleDAGs
   [2021-02-23 22:58:39,591] {scheduler_job.py:1514} DEBUG - Heartbeating the 
executor
   [2021-02-23 22:58:39,591] {base_executor.py:122} DEBUG - 0 running task 
instances
   [2021-02-23 22:58:39,592] {base_executor.py:123} DEBUG - 0 in queue
   [2021-02-23 22:58:39,593] {base_executor.py:124} DEBUG - 32 open slots
   [2021-02-23 22:58:39,594] {base_executor.py:133} DEBUG - Calling the <class 
'airflow.executors.kubernetes_executor.KubernetesExecutor'> sync method
   [2021-02-23 22:58:39,596] {scheduler_job.py:1469} DEBUG - Ran scheduling 
loop in 0.01 seconds
   [2021-02-23 22:58:39,597] {scheduler_job.py:1472} DEBUG - Sleeping for 1.00 
seconds
   [2021-02-23 22:58:40,305] {scheduler_job.py:280} DEBUG - Waiting for 
<ForkProcess(DagFileProcessor414-Process, stopped)>
   [2021-02-23 22:58:40,306] {scheduler_job.py:280} DEBUG - Waiting for 
<ForkProcess(DagFileProcessor415-Process, stopped)>
   [2021-02-23 22:58:40,599] {scheduler_job.py:1484} DEBUG - Sleeping for 0.99 
seconds to prevent excessive logging
   [2021-02-23 22:58:41,349] {settings.py:310} DEBUG - Disposing DB connection 
pool (PID 6829)
   [2021-02-23 22:58:41,386] {settings.py:310} DEBUG - Disposing DB connection 
pool (PID 6831)
   [2021-02-23 22:58:41,595] {scheduler_job.py:1435} DEBUG - Starting Loop...
   [2021-02-23 22:58:41,595] {scheduler_job.py:1446} DEBUG - Harvesting DAG 
parsing results
   [2021-02-23 22:58:41,596] {dag_processing.py:658} DEBUG - Received message 
of type DagParsingStat
   [2021-02-23 22:58:41,597] {dag_processing.py:658} DEBUG - Received message 
of type DagParsingStat
   [2021-02-23 22:58:41,598] {dag_processing.py:658} DEBUG - Received message 
of type DagParsingStat
   [2021-02-23 22:58:41,599] {dag_processing.py:658} DEBUG - Received message 
of type DagParsingStat
   [2021-02-23 22:58:41,600] {scheduler_job.py:1448} DEBUG - Harvested 0 
SimpleDAGs
   [2021-02-23 22:58:41,601] {scheduler_job.py:1514} DEBUG - Heartbeating the 
executor
   [2021-02-23 22:58:41,602] {base_executor.py:122} DEBUG - 0 running task 
instances
   [2021-02-23 22:58:41,602] {base_executor.py:123} DEBUG - 0 in queue
   [2021-02-23 22:58:41,604] {base_executor.py:124} DEBUG - 32 open slots
   [2021-02-23 22:58:41,604] {base_executor.py:133} DEBUG - Calling the <class 
'airflow.executors.kubernetes_executor.KubernetesExecutor'> sync method
   [2021-02-23 22:58:41,607] {scheduler_job.py:1469} DEBUG - Ran scheduling 
loop in 0.01 seconds
   [2021-02-23 22:58:41,608] {scheduler_job.py:1472} DEBUG - Sleeping for 1.00 
seconds
   ```
   
   EDIT: Tried it on Airflow 1.10.13 and same thing. Updated versions above.


----------------------------------------------------------------
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.

For queries about this service, please contact Infrastructure at:
[email protected]


Reply via email to