eladkal commented on a change in pull request #21673:
URL: https://github.com/apache/airflow/pull/21673#discussion_r813322129
##########
File path: airflow/providers/amazon/aws/operators/sagemaker.py
##########
@@ -608,3 +608,26 @@ def _check_if_job_exists(self) -> None:
raise AirflowException(
f'A SageMaker training job with name {training_job_name}
already exists.'
)
+
+
+class SageMakerDeleteModelOperator(BaseOperator):
Review comment:
Why this operator inherit from `BaseOperator` and not from
`SageMakerBaseOperator` ?
##########
File path: airflow/providers/amazon/aws/operators/sagemaker.py
##########
@@ -608,3 +608,26 @@ def _check_if_job_exists(self) -> None:
raise AirflowException(
f'A SageMaker training job with name {training_job_name}
already exists.'
)
+
+
+class SageMakerDeleteModelOperator(BaseOperator):
+ """Deletes a SageMaker model.
+
+ This operator returns True if model was present and deleted else return
False if Model was not present.
+
+ :param model_name: The name of Sagemaker Model (templated).
Review comment:
you mentioned it's templated but you didn't specify templated fields
##########
File path: airflow/providers/amazon/aws/example_dags/example_sagemaker.py
##########
@@ -0,0 +1,179 @@
+# Licensed to the Apache Software Foundation (ASF) under one
+# or more contributor license agreements. See the NOTICE file
+# distributed with this work for additional information
+# regarding copyright ownership. The ASF licenses this file
+# to you under the Apache License, Version 2.0 (the
+# "License"); you may not use this file except in compliance
+# with the License. You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing,
+# software distributed under the License is distributed on an
+# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
+# KIND, either express or implied. See the License for the
+# specific language governing permissions and limitations
+# under the License.
+
+from datetime import datetime
+from os import environ
+
+from airflow import DAG
+from airflow.providers.amazon.aws.operators.sagemaker import (
+ SageMakerDeleteModelOperator,
+ SageMakerModelOperator,
+ SageMakerProcessingOperator,
+ SageMakerTrainingOperator,
+ SageMakerTransformOperator,
+)
+
+model_name = "sample_model"
+training_job_name = 'sample_training'
+image_uri = environ.get('ECR_IMAGE_URI',
'123456789012.dkr.ecr.us-east-1.amazonaws.com/repo_name')
+s3_bucket = environ.get('BUCKET_NAME', 'test-airflow-12345')
+role = environ.get('SAGEMAKER_ROLE_ARN',
'arn:aws:iam::123456789012:role/role_name')
+
+sagemaker_processing_job_config = {
+ "ProcessingJobName": "sample_processing_job",
+ "ProcessingInputs": [
+ {
+ "InputName": "input",
+ "AppManaged": False,
+ "S3Input": {
+ "S3Uri": f"s3://{s3_bucket}/preprocessing/input/",
+ "LocalPath": "/opt/ml/processing/input/",
+ "S3DataType": "S3Prefix",
+ "S3InputMode": "File",
+ "S3DataDistributionType": "FullyReplicated",
+ "S3CompressionType": "None",
+ },
+ },
+ ],
+ "ProcessingOutputConfig": {
+ "Outputs": [
+ {
+ "OutputName": "output",
+ "S3Output": {
+ "S3Uri": f"s3://{s3_bucket}/preprocessing/output/",
+ "LocalPath": "/opt/ml/processing/output/",
+ "S3UploadMode": "EndOfJob",
+ },
+ "AppManaged": False,
+ }
+ ]
+ },
+ "ProcessingResources": {
+ "ClusterConfig": {
+ "InstanceCount": 1,
+ "InstanceType": "ml.m5.large",
+ "VolumeSizeInGB": 5,
+ }
+ },
+ "StoppingCondition": {"MaxRuntimeInSeconds": 3600},
+ "AppSpecification": {
+ "ImageUri": f"{image_uri}",
+ "ContainerEntrypoint": ["python3", "./preprocessing.py"],
+ },
+ "RoleArn": f"{role}",
+}
+
+sagemaker_training_job_config = {
+ "AlgorithmSpecification": {
+ "TrainingImage": f"{image_uri}",
+ "TrainingInputMode": "File",
+ },
+ "InputDataConfig": [
+ {
+ "ChannelName": "config",
+ "DataSource": {
+ "S3DataSource": {
+ "S3DataType": "S3Prefix",
+ "S3Uri": f"s3://{s3_bucket}/config/",
+ "S3DataDistributionType": "FullyReplicated",
+ }
+ },
+ "CompressionType": "None",
+ "RecordWrapperType": "None",
+ },
+ ],
+ "OutputDataConfig": {
+ "KmsKeyId": "",
+ "S3OutputPath": f"s3://{s3_bucket}/training/",
+ },
+ "ResourceConfig": {
+ "InstanceType": "ml.m5.large",
+ "InstanceCount": 1,
+ "VolumeSizeInGB": 5,
+ },
+ "StoppingCondition": {"MaxRuntimeInSeconds": 6000},
+ "RoleArn": f"{role}",
+ "EnableNetworkIsolation": False,
+ "EnableInterContainerTrafficEncryption": False,
+ "EnableManagedSpotTraining": False,
+ "TrainingJobName": training_job_name,
+}
+
+sagemaker_create_model_config = {
+ "ModelName": model_name,
+ "Containers": [
+ {
+ "Image": f"{image_uri}",
+ "Mode": "SingleModel",
+ "ModelDataUrl":
f"s3://{s3_bucket}/training/{training_job_name}/output/model.tar.gz",
+ }
+ ],
+ "ExecutionRoleArn": f"{role}",
+ "EnableNetworkIsolation": False,
+}
+
+sagemaker_inference_config = {
+ "TransformJobName": "sample_transform_job",
+ "ModelName": model_name,
+ "TransformInput": {
+ "DataSource": {
+ "S3DataSource": {
+ "S3DataType": "S3Prefix",
+ "S3Uri": f"s3://{s3_bucket}/config/config_date.yml",
+ }
+ },
+ "ContentType": "application/x-yaml",
+ "CompressionType": "None",
+ "SplitType": "None",
+ },
+ "TransformOutput": {"S3OutputPath":
f"s3://{s3_bucket}/inferencing/output/"},
+ "TransformResources": {"InstanceType": "ml.m5.large", "InstanceCount": 1},
+}
+
+# [START howto_operator_sagemaker]
+with DAG(
+ "sample_sagemaker_dag",
+ schedule_interval=None,
+ start_date=datetime(2022, 2, 21),
+ catchup=False,
+) as dag:
+ sagemaker_processing_task = SageMakerProcessingOperator(
+ config=sagemaker_processing_job_config,
+ aws_conn_id="aws_default",
+ task_id="sagemaker_preprocessing_task",
+ )
+
+ training_task = SageMakerTrainingOperator(
+ config=sagemaker_training_job_config, aws_conn_id="aws_default",
task_id="sagemaker_training_task"
+ )
+
+ model_delete_task = SageMakerDeleteModelOperator(
+ task_id="sagemaker_delete_model_task",
+ model_name=model_name,
+ aws_conn_id="aws_default",
+ dag=dag,
Review comment:
redundant
##########
File path: airflow/providers/amazon/aws/example_dags/example_sagemaker.py
##########
@@ -0,0 +1,179 @@
+# Licensed to the Apache Software Foundation (ASF) under one
+# or more contributor license agreements. See the NOTICE file
+# distributed with this work for additional information
+# regarding copyright ownership. The ASF licenses this file
+# to you under the Apache License, Version 2.0 (the
+# "License"); you may not use this file except in compliance
+# with the License. You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing,
+# software distributed under the License is distributed on an
+# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
+# KIND, either express or implied. See the License for the
+# specific language governing permissions and limitations
+# under the License.
+
+from datetime import datetime
+from os import environ
+
+from airflow import DAG
+from airflow.providers.amazon.aws.operators.sagemaker import (
+ SageMakerDeleteModelOperator,
+ SageMakerModelOperator,
+ SageMakerProcessingOperator,
+ SageMakerTrainingOperator,
+ SageMakerTransformOperator,
+)
+
+model_name = "sample_model"
+training_job_name = 'sample_training'
+image_uri = environ.get('ECR_IMAGE_URI',
'123456789012.dkr.ecr.us-east-1.amazonaws.com/repo_name')
+s3_bucket = environ.get('BUCKET_NAME', 'test-airflow-12345')
+role = environ.get('SAGEMAKER_ROLE_ARN',
'arn:aws:iam::123456789012:role/role_name')
+
+sagemaker_processing_job_config = {
+ "ProcessingJobName": "sample_processing_job",
+ "ProcessingInputs": [
+ {
+ "InputName": "input",
+ "AppManaged": False,
+ "S3Input": {
+ "S3Uri": f"s3://{s3_bucket}/preprocessing/input/",
+ "LocalPath": "/opt/ml/processing/input/",
+ "S3DataType": "S3Prefix",
+ "S3InputMode": "File",
+ "S3DataDistributionType": "FullyReplicated",
+ "S3CompressionType": "None",
+ },
+ },
+ ],
+ "ProcessingOutputConfig": {
+ "Outputs": [
+ {
+ "OutputName": "output",
+ "S3Output": {
+ "S3Uri": f"s3://{s3_bucket}/preprocessing/output/",
+ "LocalPath": "/opt/ml/processing/output/",
+ "S3UploadMode": "EndOfJob",
+ },
+ "AppManaged": False,
+ }
+ ]
+ },
+ "ProcessingResources": {
+ "ClusterConfig": {
+ "InstanceCount": 1,
+ "InstanceType": "ml.m5.large",
+ "VolumeSizeInGB": 5,
+ }
+ },
+ "StoppingCondition": {"MaxRuntimeInSeconds": 3600},
+ "AppSpecification": {
+ "ImageUri": f"{image_uri}",
+ "ContainerEntrypoint": ["python3", "./preprocessing.py"],
+ },
+ "RoleArn": f"{role}",
+}
+
+sagemaker_training_job_config = {
+ "AlgorithmSpecification": {
+ "TrainingImage": f"{image_uri}",
+ "TrainingInputMode": "File",
+ },
+ "InputDataConfig": [
+ {
+ "ChannelName": "config",
+ "DataSource": {
+ "S3DataSource": {
+ "S3DataType": "S3Prefix",
+ "S3Uri": f"s3://{s3_bucket}/config/",
+ "S3DataDistributionType": "FullyReplicated",
+ }
+ },
+ "CompressionType": "None",
+ "RecordWrapperType": "None",
+ },
+ ],
+ "OutputDataConfig": {
+ "KmsKeyId": "",
+ "S3OutputPath": f"s3://{s3_bucket}/training/",
+ },
+ "ResourceConfig": {
+ "InstanceType": "ml.m5.large",
+ "InstanceCount": 1,
+ "VolumeSizeInGB": 5,
+ },
+ "StoppingCondition": {"MaxRuntimeInSeconds": 6000},
+ "RoleArn": f"{role}",
+ "EnableNetworkIsolation": False,
+ "EnableInterContainerTrafficEncryption": False,
+ "EnableManagedSpotTraining": False,
+ "TrainingJobName": training_job_name,
+}
+
+sagemaker_create_model_config = {
+ "ModelName": model_name,
+ "Containers": [
+ {
+ "Image": f"{image_uri}",
+ "Mode": "SingleModel",
+ "ModelDataUrl":
f"s3://{s3_bucket}/training/{training_job_name}/output/model.tar.gz",
+ }
+ ],
+ "ExecutionRoleArn": f"{role}",
+ "EnableNetworkIsolation": False,
+}
+
+sagemaker_inference_config = {
+ "TransformJobName": "sample_transform_job",
+ "ModelName": model_name,
+ "TransformInput": {
+ "DataSource": {
+ "S3DataSource": {
+ "S3DataType": "S3Prefix",
+ "S3Uri": f"s3://{s3_bucket}/config/config_date.yml",
+ }
+ },
+ "ContentType": "application/x-yaml",
+ "CompressionType": "None",
+ "SplitType": "None",
+ },
+ "TransformOutput": {"S3OutputPath":
f"s3://{s3_bucket}/inferencing/output/"},
+ "TransformResources": {"InstanceType": "ml.m5.large", "InstanceCount": 1},
+}
+
+# [START howto_operator_sagemaker]
+with DAG(
+ "sample_sagemaker_dag",
+ schedule_interval=None,
+ start_date=datetime(2022, 2, 21),
+ catchup=False,
+) as dag:
+ sagemaker_processing_task = SageMakerProcessingOperator(
+ config=sagemaker_processing_job_config,
+ aws_conn_id="aws_default",
+ task_id="sagemaker_preprocessing_task",
+ )
+
+ training_task = SageMakerTrainingOperator(
+ config=sagemaker_training_job_config, aws_conn_id="aws_default",
task_id="sagemaker_training_task"
+ )
+
+ model_delete_task = SageMakerDeleteModelOperator(
+ task_id="sagemaker_delete_model_task",
+ model_name=model_name,
Review comment:
I don't follow on that.
Was `sample_model` existed before this DAG started?
the goal of example dags is that users should be able to run them and it
will work for them.
Is this example really runnable?
--
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.
To unsubscribe, e-mail: [email protected]
For queries about this service, please contact Infrastructure at:
[email protected]